
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2007-04-17

T-Spline Simplification T-Spline Simplification

David L. Cardon
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Cardon, David L., "T-Spline Simplification" (2007). Theses and Dissertations. 871.
https://scholarsarchive.byu.edu/etd/871

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/871?utm_source=scholarsarchive.byu.edu%2Fetd%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

T-SPLINE SIMPLIFICATION

by

David L. Cardon

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2007

www.manaraa.com

Copyright c© 2007 David L. Cardon

All Rights Reserved

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

David L. Cardon

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Thomas W. Sederberg, Chair

Date Bryan S. Morse

Date Scott N. Woodfield

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of David L.
Cardon in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Thomas W. Sederberg
Chair, Graduate Committee

Accepted for the
Department Parris K. Egbert

Graduate Coordinator

Accepted for the
College Thomas W. Sederberg

Associate Dean, College of Physical and Mathematical
Sciences

www.manaraa.com

ABSTRACT

T-SPLINE SIMPLIFICATION

David L. Cardon

Department of Computer Science

Master of Science

This work focuses on generating approximations of complex T-spline surfaces

with similar but less complex T-splines. Two approaches to simplifying T-splines are

proposed: a bottom-up approach that iteratively refines an over-simple T-spline to

approximate a complex one, and a top-down approach that evaluates existing control

points for removal in producing an approximations. This thesis develops and compares

the two simplification methods, determining the simplification tasks to which each

is best suited. In addition, this thesis documents supporting developments made to

T-spline research as simplification was developed.

www.manaraa.com

ACKNOWLEDGMENTS

Roughly half of the material in this thesis is drawn from the publication, ”T-

Spline Local Refinement and Simplification” [1], in which I was closely involved during

the beginning of my program at BYU. I am extremely grateful for all of the theoretical

discussions with Dr. Sederberg, which allowed us to develop the code and the theory

for that paper concurrently. All of the coauthors also contributed significantly to the

production of such a quality publication—many thanks to Tom Finnigan and Nick

North for their inestimable help with figures and last minute coding, and to Jianmin

Zheng and Tom Lyche for their invaluable knowledge of the literature and related

methods.

I would also like to thank Dr. Sederberg for his patience with my progress—it

has been a long road with more than a few diversions. Fortunately, I think they have

provided useful lessons and insights, which have rounded out my understanding of

the subject. In the end, I can say with certainty that I gained an education out of all

of this.

In addition to those directly connected to my research, I would like to ac-

knowledge the useful contributions of other students in the lab—particularly, David

Cline, Josh Jenny and Doug Kennard come to mind. Their willingness to listen to

my complex descriptions (of whatever algorithm I happened to be working on) may

not have helped them, but it certainly helped me keep moving ahead.

Finally, I would like to thank my parents for never making me to go to school

and for valuing knowledge themselves—their examples taught me more than coercion

ever could.

www.manaraa.com

Contents

Title Page i

Abstract v

List of Figures ix

1 Introduction 1

1.1 Overview . 7

2 Foundations 9

2.1 T-Splines . 9

2.1.1 NURBS Curves . 9

2.1.2 NURBS Surfaces . 15

2.1.3 T-Spline Definition . 16

2.2 Blending Function Refinement . 22

2.3 Least-Squares Fitting of Simplified T-Splines 29

2.3.1 T-Spline Spaces . 30

2.3.2 Linear Least-Squares . 32

3 Related Work 35

3.1 Simplification . 35

3.2 NURBS Surface Simplification . 36

3.3 Subdivision Surface Simplification . 40

3.4 NURBS Knot Insertion . 41

vii

www.manaraa.com

4 T-Spline Simplification using Iterative Refinement 43

4.1 T-Spline Local Refinement . 43

4.1.1 NURBS Knot Insertion Revisited 45

4.1.2 The T-Spline Local Refinement Algorithm 48

4.2 T-Spline Simplification using Iterative Refinement 59

4.2.1 Analysis . 62

5 T-Spline Simplification using Iterative Simplification 65

5.1 Control Point Removal . 66

5.1.1 Reverse Blending Function Transformations 67

5.1.2 T-Spline Control Point Removal 74

5.2 Iterative Simplification . 76

5.2.1 A Framework for Iterative Simplification 77

5.2.2 Applying Algorithm 5.2 . 78

6 Results 85

6.1 Iterative Refinement . 85

6.2 Iterative Simplification . 89

6.3 Comparison and Analysis . 91

7 Conclusions and Future Work 95

Bibliography 97

A Catmull-Clark Local Refinement 101

A.1 Extraordinary Blending Functions . 101

A.2 Local Extraordinary Point Refinement 103

A.2.1 Refinement Rules for Bordering Vertices 106

A.2.2 Final Note . 114

viii

www.manaraa.com

List of Figures

1.1 A comparison of two planar polygon meshes. 3

1.2 A NURBS curve with a few labeled parameter values. 4

1.3 Superfluous control points in a NURBS 5

1.4 A comparison of different surface-type topologies. 7

2.1 A cubic NURBS curve . 10

2.2 A B-spline basis function . 11

2.3 A NURBS curve labeled with knot values and knot intervals. 12

2.4 A NURBS curve before the knot insertion process. 13

2.5 A NURBS curve with edges annotated in preparation for insertion. . 14

2.6 Selecting an insertion parameter position on a NURBS curve. 14

2.7 Marking the insertion parameter on the annotated edges. 15

2.8 The final NURBS curve after the insertion. 16

2.9 Topology and Local Control of NURBS Surfaces 17

2.10 A portion of a T-spline control grid. 19

2.11 Identifying local knot intervals in a T-spline. 19

2.12 A portion of a T-spline with arbitrary topology. 20

2.13 Tensor product blending functions in a T-spline. 21

2.14 A B-spline basis function with arbitrary knot intervals. 23

2.15 Basis Function Refinement using Knot Insertion. 24

2.16 Diagram of a bivariate blending function. 26

2.17 Result of refining a bivariate blending function. 27

ix

www.manaraa.com

2.18 A blending function refined to four smaller blending functions. 28

2.19 A nested sequence of T-spline spaces. 31

3.1 Removing a single knot from a NURBS surface. 37

4.1 Additional Control Points Required to Insert Into a T-Spline 44

4.2 Basis functions and their local knot intervals in a NURBS curve . . . 45

4.3 Modifying the control polygon . 46

4.4 A T-spline control grid before refinement 49

4.5 T-spline control polygon after refinement 51

4.6 T-spline control polygon before refining at Pk+1 52

4.7 Blending functions out-of-agreement with the T-spline control grid . . 52

4.8 Diagram of Bk
[2,1,1,2][2,2,1,1](s, t) . 53

4.9 Mesh modification due to disagreeing blending functions 53

4.10 A complex NURBS topology and a single Bézier to approximate it . . 60

4.11 Splitting an above-tolerance face during iterative refinement 62

4.12 Splitting offending faces . 63

4.13 A weighted NURBS that is difficult to approximate 63

5.1 A graphical representation of the reverse blending function transform 68

5.2 A labeled blending function before a reverse transform 69

5.3 Modified control polygon of a curve with decoupled blending functions 70

5.4 Control polygon after a single reverse transform on B0
[∗,2,2,1] 71

5.5 Completing the control point removal process 72

5.6 Thin faces created by several removals in the s parameter direction . 80

5.7 Faces created by several removals in the t parameter direction 80

5.8 The two removal possibilities for a valence four control point 82

5.9 Expansion of removals in the direction opposite that of the removal . 82

x

www.manaraa.com

6.1 Iterative Refinement : model of a human head 86

6.2 Iterative Refinement : Model of a Frog 86

6.3 Iterative Refinement : Model of a Triceratops 87

6.4 Iterative Refinement : Model of a Woman 87

6.5 Iterative Refinement : Comparison with Wavelet Decomposition . . . 88

6.6 Model of a Frog . 89

6.7 Iterative Simplification : model of a human head 90

6.8 Iterative Simplification : Model of a Triceratops 90

6.9 Iterative Simplification : Model of a Woman 91

6.10 Simplification method topology comparison 93

A.1 Blending functions after NURSS subdivision 102

A.2 Local subdivision . 104

A.3 Control points needing refinement rules 105

A.4 A cluster of faces near extraordinary points 106

A.5 Faces to add to a cluster . 107

A.6 Border vertex possible refinement patterns 108

A.7 Case 1 — labeled . 109

A.8 Case 2 — labeled . 110

A.9 Propagation due to refinement . 111

A.10 Case 3 — labeled . 111

A.11 Case 4 — labeled . 112

A.12 Case 4 — Deriving a new blending function 113

xi

www.manaraa.com

Chapter 1

Introduction

Taking the design of a geometric object from conception to instantiation is a

lengthy process for artisan and craftsman alike. The quality of the design and the

speed with which it is produced is in part a function of the tools available to the

designers. The usefulness of a design tool depends on the expertise required to wield

it and on the tool’s effectiveness in affecting the shape of the object being designed.

By providing more useful design tools and a more forgiving design environment, com-

puters have become essential assets for designers.

The field of Computer-Aided Geometric Design (CAGD) encompasses all prob-

lems in which a computer algorithm may be used to compute or store the geometry

of an object [2]. The primary goal of CAGD is to assist the designer in creating

a geometric description of a target object’s shape. CAGD systems are the tools of

the modern designer and artist. For example, modern automobiles are now designed,

formed and evaluated (via simulation) entirely using a computer. In the past, precise

paper diagrams and costly physical prototypes were required in order to produce the

same quality of design [3].

The geometric description of an object in a computer is typically constructed

using simple, atomic shapes called primitives. Computers can describe objects in two

and three spatial dimensions, and primitives differ depending on the dimension. Lines

and curves are the primitive shapes from two-dimensional geometric design. Planes

and surfaces are the equivalent primitives in three dimensions.

1

www.manaraa.com

In order to build objects from graphics primitives in a CAGD system, an

artist manipulates the primitives to form them into a desired shape. The process of

forming primitives into a desired object is called modeling and the geometric object

that is formed is called a model. There are many different kinds of models and

modeling systems and for this thesis we focus on free-form curve and surface models,

whose primitives have adjustable components called control points. In these systems,

the control point is the most basic element with which the designer interacts while

modeling—by altering the geometric position of a control point within the system,

the designer alters a portion of the corresponding primitive’s shape.

For curve primitives the curve control points form what is called a control

polygon. For surface primitives the control points form a control grid or control mesh,

which consists of sets of control points connected to one another via a set of edges.

To add more detail to a primitive, an artist performs an operation that produces

additional control points for adjusting the model. As more control points are added

to a model, more detail is permitted, but the increased number of control points can

make the model more complicated.

Simplification is the process of modifying an existing geometric description of

an object to an equivalent or approximately equivalent form that is less complex—i.e.,

that has fewer control points. Since the main focus of this thesis is the simplification

of geometric surfaces, the task of surface simplification is to reduce and modify the

sets of control points used to define a geometric surface. In the approximation case,

this modification should attempt to represent the original shape as best as possible

within the desired approximation.

Sometimes complexity is necessary in order to describe a desired shape. We

can think of each control point of an object as carrying some geometrical information

about a portion of the object’s description. From this perspective some control points

may carry redundant information. Useful simplification of the object will eliminate

2

www.manaraa.com

(a) Complex planar polygon mesh. (b) Simplified planar polygon mesh. The
inner control points contain no useful ge-
ometric information and thus may be re-
moved losslessly.

Figure 1.1: A comparison of two planar polygon meshes. All polygons in the depicted
meshes are co-planar.

redundant control points, reducing the object’s control points to the necessary set.

For example, we might describe a single planar polygon with a set of several coplanar

triangles as in Figure 1.1(a). However, a simpler description of this same shape

would be a single 18-sided planar polygon as in Figure 1.1(b). In Figure 1.1(a) the

additional control points of the shape’s component triangles carry no information

needed to describe the shape. The identification of unnecessary control points for

simplification depends entirely on the properties of the surface used to create the

object—if Figure 1.1(a)’s triangles were not all coplanar, the described simplification

may not be possible.

One of the most common types of free-form surfaces in three-dimensional

CAGD are founded on the definition of a two-dimensional curve called a NURBS

(Non-Uniform Rational B-Spline) curve. The NURBS curve is a parametric curve,

meaning that the points on the curve are swept out as the curve’s parameter1 changes.

Figure 1.2 illustrates a NURBS curve with its control points and a few parameter val-

1Mathematically, the parameters of a curve or surface are the independent variables in the ex-
pression for the curve/surface

3

www.manaraa.com

t=9

t=6

t=4t=3

P5

P4
P3

P2P1

P0

Figure 1.2: A NURBS curve with a few labeled parameter values. The curve is a
function of the control points and the t parameter value.

ues along the curve. The NURBS curve is formed by interpolating the positions of

the curve’s control points as the parameter changes. One can visualize how this works

using the concept of center-of-mass from physics. Imagine that each control point has

a mass that changes smoothly over time. If we plot the center of the masses as time

passes, the time-varying centers will sweep out a smooth curve in space.

The main difference between various curve definitions lies in the definition of

the mass functions (called blending or basis functions) associated with the curve’s

control points. The main reason that NURBS curves and surfaces are particularly

useful to designers lies in the mathematical properties of their blending functions,

which include local control, the variation diminishing property2 and constraints on

the continuity of the curve. Due to their usefulness in design, NURBS curves and their

blending functions have been studied at length by the research community [4][5][6][7].

2The variation diminishing property states that no straight line intersects the curve more times
than it does it’s control polygon.

4

www.manaraa.com

(a) Topology of a NURBS
control grid. More de-
tail is needed in the two
shaded areas of the mesh.

(b) The NURBS control
grid topology after the de-
tail is added.

(c) The control points
highlighted in red are nec-
essary due to the NURBS
definition, not because de-
tail is desired at their loca-
tion.

Figure 1.3: The superfluous control points that occur in NURBS surfaces. The
highlighted control points in (c) are not desired by the artist, but must exist in
the mesh due to the NURBS definition.

The extension of NURBS curves in two dimensions to surfaces in three di-

mensions may be trivially achieved via a tensor product [8]. The result of the tensor

product produces control points arranged in an array that defines the NURBS surface

in terms of two parameters instead of the single one used in the curve case. While

this derivation is straightforward mathematically, it has two distinct disadvantages:

1. The rigid array topology of the NURBS control grid. While simple to describe

mathematically, the array topology can lead to a large number of unnecessary

control points. For example, Figure 1.3(a) illustrates the topology of a NURBS

surface, into which a designer wishes to add more detail. In order to do so, new

control points are added (Figure 1.3(b)), which results in several unnecessary

control points (Figure 1.3(c)). These control points are only present in the

control grid due to the topological constraints of the NURBS surface.

5

www.manaraa.com

2. The strict parameterization of the surface does not permit a lot of common

shapes. NURBS surfaces may only be homeomorphic to a plane, to an open

cylinder or to a torus. Many objects in the real world do not fit into these cri-

teria. For example, a NURBS surface representation of a sphere is not actually

a closed surface and is usually a cylinder with collapsed ends.

In an attempt to overcome the latter limitation of NURBS surfaces, researchers

derived from it another surface called a subdivision surface to allow for more topolog-

ical flexibility [9][10][11][12]. With subdivision surfaces, control meshes may include

faces with an arbitrary number of sides (NURBS meshes are limited to four-sided

faces) and vertices of arbitrary valence. While an improvement over NURBS surfaces,

subdivision surfaces have limitations of their own. First, many of these surfaces are

defined only in terms of their subdivision rules, which must be applied to the entire

mesh, making them slow to evaluate. Secondly, subdivision surfaces are difficult to

modify at different levels of detail. In order to modify in detail a small portion of

the mesh, a global refinement must be performed on the entire mesh, making coarse

control difficult where it is still desired. While hierarchical methods have been devel-

oped to overcome this problem [13], the hierarchy makes user interfaces clunky and

they are therefore seldom used.

Recently, a new surface definition called a T-spline was introduced [14][15].

The T-spline surface is founded on the same blending functions as a NURBS surface,

but the surface definition overcomes the topological limitations of the NURBS control

grid. In a T-spline control grid, control points are not required to be arranged in an

array of control points, reducing dramatically the complexity required to represent

a smooth surface. Figure 1.4 illustrates the topological difference between T-spline,

NURBS and subdivision surface control grids. Founded on the NURBS surface, T-

spline surfaces are backward compatible with both NURBS and popular subdivision

surfaces.

6

www.manaraa.com

(a) NURBS control grid
topology

(b) Subdivision surface
control grid topology

(c) T-spline control grid
topology

Figure 1.4: A comparison of different surface type topologies. Subdivision control
grids generalize NURBS to arbitrary topology. T-splines allow T-junctions, which
further generalize the topology permitted.

The new flexibility of T-splines over NURBS presents new opportunities for

research in simplification. Previous work for simplifying NURBS models [16] was lim-

ited by the topological constraints of the NURBS surface—an entire row of control

points has to be removed to simplify a NURBS model. With T-splines the removal

of only a partial row is permitted in simplification. In addition, while some work has

been done on simplifying subdivision surfaces [17], T-splines allow for greater free-

dom in the arrangement of control points and in the parameterization of the surface.

Finally, T-spline surfaces permit formerly infeasible surface operations such as merg-

ing [18] and intersection of separate surfaces. The results of these new operations can

also benefit from automated T-spline simplification methods.

1.1 Overview

Motivated by the new possibilities available in T-splines, this work develops specif-

ically two methods for simplifying T-spline surfaces. Since conversion of existing

7

www.manaraa.com

NURBS and subdivision surface models to T-spline models is lossless, these methods

may be applied to a large quantity of existing models.

This document proceeds as follows: Chapter 2 describes the T-spline surface

and fundamental operations that are the foundation for the algorithms used in T-

spline and related simplification. Chapter 3 presents previous research related to the

simplification of free-form surface models and identifies the simplification problem

addressed in this thesis. Chapters 4 and 5 comprise the two developed approaches

to T-spline simplification—iterative refinement and iterative simplification, respec-

tively. Chapter 6 presents results and compares the two approaches to each other

and to T-spline derivatives of spline decomposition. Chapter 7 briefly summarizes

and concludes the thesis.

8

www.manaraa.com

Chapter 2

Foundations

This chapter presents the salient features of T-splines and related surfaces,

including the two fundamental atomic operations of T-spline simplification: blending

function refinement and least-squares fitting.

2.1 T-Splines

The T-spline surface was developed and introduced to the community at large in [14].

This chapter focuses specifically on the aspects of the T-spline definition that apply

to the simplification problem, beginning with a brief review of NURBS curves and

surfaces (on which T-splines are founded). We limit our discussion to T-spline and

NURBS surfaces of degree three although the principles extend to any degree T-spline.

[19] explains how to construct T-splines of any degree.

2.1.1 NURBS Curves

Figure 2.1 shows a cubic NURBS curve. The Pi are geometric positions (in R
2 or R

3)

and are called control points. The line segments connecting the control points are

called the curve’s control polygon. Each edge of the control polygon (except for the

first and last) corresponds to a Bézier curve. The shape of the curve can be changed

by either moving the control points or by altering a scalar value assigned to each Pi

called a weight, wi.

9

www.manaraa.com

P0

P1
P2

P3

P4

P5

Figure 2.1: A cubic NURBS curve shown with its control points and control polygon.

A cubic NURBS curve can be decomposed into multiple connected cubic Bézier

curves, each of which is C2 continuous with its neighbors. The parameter values at

which two adjacent Bézier curves meet are called knot values or, simply, knots. Thus,

a NURBS curve consists of a set of control points and a sequence of knot values called

the curve’s knot vector.

The equation for a degree three NURBS curve is given by

P(t) =

∑n

i=0 PiwiB
3
i (t)

∑n

i=0 wiB
3
i (t)

, (2.1)

where the B3
i (t) are called B-spline basis functions. Each B-spline basis function is

a piecewise polynomial comprised of four C2 segments as shown in Figure 2.2. B3
i (t)

can be defined by the recurrence relation:

B0
i (t) =

1 if ti ≤ t ≤ ti+1

0 otherwise

10

www.manaraa.com

t1t0 t2 t3 t4

Figure 2.2: A B-spline basis function shown as four piecewise polynomial segments
and labeled with its knot values. The function value outside of the colored polynomial
segments is zero.

Bn
i (t) = ωn

i (t)Bn−1
i (t) +

(

1 − ωn
i+1(t)

)

Bn−1
i+1 (t)

where

ωn
i (t) =

t−ti
ti+n−1−ti

if ti 6= ti+n−1

0 otherwise
.

As shown in Figure 2.2, B3
i (t) is non-zero over a span of five knot values.

Because of this, NURBS curves are said to exhibit local control ; i.e., any one control

point in a cubic NURBS may influence at most four Bézier curves. Referring to

Figure 2.3, the blending function of the control point labeled t3 is non-zero over the

five knots centered about that point: t1, t2, t3, t4 and t5.

While knot values are traditionally used to define B-spline basis functions, an

alternative notation called knot intervals was introduced in [12]. A knot interval is

the difference between two adjacent knot values and is the parameter length of the

Bézier curve that lies between the knots. Figure 2.3 illustrates a NURBS curve with

both knot values and knot intervals labeled. Take note that degree three NURBS

curves have an extra knot on each end of the curve that is not associated with a

11

www.manaraa.com

t =0 0

t =1 1

t =2 2

t =53

t =6 4

t =95

t =1 06

t =11 7

d =1 0

d =1 1

d =3 2
d =1 3

d =3 4

d =1 5

d =1 6

Figure 2.3: A NURBS curve labeled with knot values and knot intervals. The knot
vector for the curve is (t0, . . . , t7), which is expressed as [d0, . . . , d6] in knot interval
notation.

control point. In interval notation these knots are represented with an extra interval

off the end-points of the curve.

From Figure 2.3 it is clear that knot values may be computed from the knot

intervals—assign a value to one of the knot boundaries of an interval and then add or

subtract intervals accordingly to attain the remaining knot values. Since the appear-

ance of a NURBS curve is invariant under linear transformation of the knot vector,

the knot value selected as the initial reference may be entirely arbitrary.

Although knot values are sufficient for use with NURBS curves and surfaces,

knot interval notation is necessary for T-splines, which have fewer restrictions on

topology. In addition, knot interval notation is often more intuitive than knot values,

since the intervals associate parameter distances directly with the edges of the control

polygon. For these reasons, we will use knot interval notation from this point on in

the thesis.

12

www.manaraa.com

d =1 0

d =1 1

d =2 2

d =1 3

d =3 4

d =1 5

d =1 6

P0

P1

P2

P3

P4

P5

Figure 2.4: A NURBS curve before the knot insertion process with knot intervals
labeled di.

Knot Insertion

We now present an algorithm for knot insertion1 using the knot interval notation.

Since we are dealing with knot intervals rather than knot values, this procedure

might more properly be called interval splitting. We illustrate the procedure using

the curve in Figure 2.4, for which we will split interval d2 = 3 into intervals 2 and 1.

First, annotate each edge of a degree three NURBS curve with its own interval and

that of its neighbors as in Figure 2.5. Note that the intervals marked on the edges

are drawn in proportion to their interval values. Notice also that intervals associated

with a single edge appear in three of the marked up edges (the associated edge itself

and its two neighbors).

Second, select a parameter distance down one of the control polygon’s edges,

at which insertion is desired (the insertion edge) as in Figure 2.6. Then, identify

that parameter position on the three annotated edges that include the insertion pa-

rameter’s associated interval (see Figure 2.7). Finally, compute the positions of the

control points at the identified parameter positions—the two control points incident

1For more background information on knot insertion, see Section 3.4.

13

www.manaraa.com

1

3

1

1
3

1
3

1

3

1

3

1

3

1
1

1

1

3
1

3

1
1

P0

P1

P2

P3

P4

P5

Figure 2.5: A NURBS curve with edges annotated in preparation for insertion. Each
of the edges of the control polygon is annotated according to nearby knot intervals.
The annotation knot intervals are color-coded to match their interval’s associated
edge.

d =1 0

d =1 1

d =2 L
d =1 3

d =3 4

d =1 5

d =1 6

d =1 R

P0

P1

P2

P3

P4

P5

Figure 2.6: Selecting an insertion parameter position on a NURBS curve. The selected
position is two-thirds the distance down the red edge with interval d2, dividing it into
dL and dR.

14

www.manaraa.com

1

3

1

1
3

1
3

1

3

1

1

3
1

3

1
1

Figure 2.7: Marking the insertion parameter on the annotated edges. The insertion
parameter is now marked on each of the three annotated edges, the three markers
indicate the locations for the new NURBS control points after insertion.

to the insertion edge are moved to the positions on their respective neighbor edges

and the new control point is placed at the position identified on the insertion edge,

as illustrated in Figure 2.8.

This geometric description provides a graphical medium for deriving an ana-

lytical solution to knot insertion. Directly from Figure 2.7, we can infer the linear

combinations of the original control points that compose the positions of the new

ones, using the labels of Figure 2.6:

P′1 = dR

d0+d1+d2
P0 + d0+d1+dL

d0+d1+d2
P1

P′k = dR+d3

d1+d2+d3
P1 + d1+dL

d1+d2+d3
P2

P′2 = dR+d3+d4

d2+d3+d4
P2 + dL

d2+d3+d4
P3.

(2.2)

2.1.2 NURBS Surfaces

A NURBS surface is the bivariate extension of the NURBS curve and is expressed as

P(s, t) =

∑n

i=0

∑m

j=0 PijwijB
3
s,i(s)B

3
t,j(t)

∑n

i=0

∑m

j=0 wijB
3
s,i(s)B

3
t,j(t)

(2.3)

15

www.manaraa.com

1

1

1

1

1

1

3

2

P0
'

P1
'

P2
'

P3
'

P4
'

P5
'

P6
'

Figure 2.8: The final NURBS curve after the insertion at the selected parameter
position.

where B3
s,i(s) and B3

t,j(t) are B-spline basis functions associated with the s and t

parameters (and therefore their corresponding knot intervals), respectively. This

NURBS surface has (n+1)×(m+1) control points, which are arranged in a rectangular

array. Figure 2.9(a) illustrates the control grid for a NURBS surface with edges

labeled by knot intervals. As seen in this figure, knot intervals for a NURBS surface

must be repeated for each row and column of edges.

Just as with NURBS curves, NURBS surface control points feature local con-

trol. For example, in Figure 2.9(a) the control point labeled Pk influences the surface

shape for only a finite region of the grid as highlighted in Figure 2.9(b). The blending

functions for Pk, B3
s,k and B3

t,k, depend only on the knot intervals surrounding Pk:

B3
s,k depends on intervals (e2, e3, e4, e5) and B3

t,k depends on intervals (d1, d2, d3, d4).

Note the correspondence between these intervals and the region that Pk influences.

2.1.3 T-Spline Definition

Like a NURBS surface, a T-spline is a tensor product B-spline surface, meaning that

control points of a T-spline surface contribute to the shape of the surface according

16

www.manaraa.com

d 0
e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

d 1 d 2 d 3d 3 d 4 d 5 d 6 d 7

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7

P k

(a) A degree three NURBS surface control grid. The
knot intervals for the s parameter are labeled with
{d0, . . . , d7} and those for the t parameter are labeled
with {e0, . . . , e6}.

d 0
e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

e 0

e 1

e 2

e 3

e 4

e 5

e 6

d 1 d 2 d 3d 3 d 4 d 5 d 6 d 7

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7

d 0 d 1 d 2 d 3 d 4 d 5 d 6 d 7

P k

(b) The parameter region of the NURBS surface that
Pk influences.

Figure 2.9: Topology and Local Control of NURBS Surfaces.

17

www.manaraa.com

to a tensor product B-spline blending function2. While T-splines are based on the

same blending functions as a NURBS surface, a T-spline equation is slightly different

from that of a NURBS surface:

P(s, t) =

∑n

i=0 PiwiBi(s, t)
∑n

i=0 wiBi(s, t)
(2.4)

where Bi(s, t) = Bs,i(s) · Bt,i(t).

The univariate portions3 (i.e., Bs,i(s) and Bt,i(t)) of the T-spline blending

functions can be unique to each control point, whereas in a NURBS surface Bs,i(s)

is the same for all control points in a given column, and Bt,i(t) is the same for all

control points in a given row. In a T-spline, the T-grid conveys the knot intervals for

each control point’s blending functions, as follows.

A T-grid is defined by a set of edges E = {ei} and control points P = {Pi}.

Each edge connects two control points and has associated with it a scalar knot interval

value, di. By connecting control points together, sets of edges form a grid with four-

sided faces in the topology4. A single side of a face may contain multiple edges,

connected via T-junctions on that face. For example, in Figure 2.10 face F1 contains

three edges on its left side. The knot interval length of a side is the sum of the edge

knot intervals along that face. So, the knot interval length of the left side of F1 in

Figure 2.10 is d3 + d4 + d5. The T-spline definition states that the knot interval

lengths of opposite sides of a face must be equal. For Figure 2.10 this implies that

d0 + d1 = d3 + d4 + d5.

With edges and knot intervals defined, the local knot intervals for any control

point’s blending function may be easily determined as follows: Draw a line through

2We will see later on that this statement is not true for all control points in a T-spline—there
are some exceptions.

3Since we will only be discussing degree three T-splines, we dispense with the degree-specifying
superscript here to avoid clutter.

4In this thesis we limit our discussion to orientable surfaces (2-manifolds) with or without bound-
aries having four-sided faces only. While T-splines do support n-sided faces and non-orientable
surfaces, these topological constructions are needlessly complex and beyond the scope of this work.

18

www.manaraa.com

d 0

d 1

d 2

d 3

d 4

F 1

Figure 2.10: A portion of a T-spline control grid. Only select knot intervals are
labeled in the figure.

d 1

P

d 2 d 3d 0 d 4

e 4

e 3

e 2

e 1

e 0

(a) The s intervals for control point P are
[d0, d1 + d2, d3, d4].

d 1 d 2 d 3d 0 d 4

e 4

e 3

e 2

e 1

e 0

P

(b) The t intervals for control point P are
[e1, e2, e3, e4].

Figure 2.11: Identifying local knot intervals in a T-spline.

19

www.manaraa.com

P

Figure 2.12: A portion of a T-spline with arbitrary topology.

the control point along each of the parameter directions (s and t). Then, each control

point or edge that the line crosses divides the line into segments, each of which has

an interval length. The two line segment intervals closest to each side of the control

point comprise the four local knot intervals for the point in the parameter direction

of the line. For example, Figure 2.11(a) identifies the local knot intervals for point

P’s s parameter and Figure 2.11(b) identifies the local knot intervals for point P’s t

parameter using the described method.

We can now determine blending functions for most of the control points in

a T-spline grid. However, there are still some blending functions that cannot be

determined using this method. So far, all of the T-spline topologies we have seen

have been laid out such that all edges are either horizontal or vertical, but T-splines

support other topologies as well. For example, Figure 2.12 represents a valid T-

spline topology5. Note that the vertex labeled P is of valence three, but is not a

5The original T-splines paper [14] makes a distinction between two classes of topologies: T-splines
and T-NURCCs. In [14] a T-spline’s only non-T-junction control points must be of valence four,
whereas a T-NURCC may contain control points of any valence (T-junction or not). In this thesis,

20

www.manaraa.com

Figure 2.13: Control points with tensor product blending functions in a T-spline with
an extraordinary point. The control points with tensor product blending functions
are shown in red.

T-junction. As a result, the parameterization of the surface at this point does not

map parametrically to a coordinate system of two parameters—we cannot use our

method for determining local knot intervals here. Vertex P is called an extraordinary

point and all non-T-junction vertices not of valence four will produce an unusual

parameterization and are therefore extraordinary points.

In spite of this change in parameterization caused by extraordinary points,

our method for determining tensor product blending functions applies to many of the

control points in the T-grid. Figure 2.13 emphasizes the control points whose blending

functions may still be derived with this method. Note that this case demonstrates

the usefulness of knot interval notation—a global knot vector would not work in this

case, but it is handled naturally by knot intervals. For the remaining points (those

not highlighted in Figure 2.13), we will use subdivision surface rules to determine the

we do not adopt this nomenclature, but group both classes under the term T-spline. This is mostly
for ease of discussion, since under [14]’s terminology T-splines are proper subsets of T-NURCCs.

21

www.manaraa.com

blending functions of the non-tensor product control points. Specifically, the rules

derived in [12] will be used.

Because of the its origins, the T-spline is exactly compatible with two popular

surface types: In the uniform knot interval case with no T-junctions in the mesh, a

T-spline is equivalent to a Catmull-Clark subdivision surface. In the case where there

there are no extraordinary points, the T-spline is equivalent to a NURBS surface

(although the NURBS surface may have considerably more control points).

With all of the blending functions of the T-spline defined, it is then possible

to compute the surface using (2.4). We stress here that, by definition, a T-spline’s

blending functions are tightly coupled with the T-grid, because the blending functions

are directly derived from it (via the grid’s knot intervals). This observation may

seem unnecessary, but as we develop our simplification methods later on, we will see

examples of blending functions that are temporarily decoupled from the T-grid.

2.2 Blending Function Refinement

In developing methods for T-spline simplification, one of the atomic operations used

is blending function refinement. This operation originates directly from work on knot

insertion (see [5] or [2]). In this section we focus specifically on the refinement of the

tensor product B-spline blending functions of a T-spline, which differs only slightly

from general knot insertion. Note that we do not cover the refinement of extraordinary

point blending functions here; that topic is covered in Appendix A.

The refinement of tensor product B-spline blending functions is a special case

of knot insertion. Refinements may be performed on each of the parameter directions

separately. Therefore, the refinement operation may be simplified to a knot insertion

into a univariate B-spline blending function.

A B-spline basis function can be treated as a special case of a B-spline curve.

The ordinates of the curve are given such that only the central value is equal to

22

www.manaraa.com

d 0 d 3 d 4d -1

d 1 d 2

t

B(t)

Figure 2.14: A B-spline basis function with arbitrary knot intervals. The shape of
the curve is not affected by the values of the intervals d−1 and d4. The function’s
control point ordinate values are (0,0,1,0,0) from left to right.

one with all other ordinates equal to zero. Since the ordinates are given, only the

knot intervals alter the shape of the curve. A B-spline basis function with arbitrarily

labeled knot intervals is shown in Figure 2.14.

A single insertion into a B-spline basis function produces two scaled B-spline

basis functions, whose sum is exactly equal to the original. The knot intervals of the

scaled basis functions match those of the original, but one of the intervals is split—the

interval at which the refinement occurred. Analytically, we express this idea as

Bi(u) = c1Bi1(u) + c2Bi2(u). (2.5)

The values of the scaling coefficients depend solely on the knot intervals of the original

blending function and the parameter value at which an interval in that function is

split—an example will illustrate.

The control polygon for a degree three B-spline basis function is given in

Figure 2.15(a) with knot intervals labeled (d0, d1, d2, d3). Suppose we wish to split d2

into intervals, dL and dR. We can perform the split geometrically, by mapping the new

intervals and each of the interval neighbors onto the associated edges of the control

polygon as illustrated in Figure 2.15(b). Then, to compute the refinement, we derive

the ordinate values of the new control polygon’s vertices, using our annotated original

control polygon. The positions of the new ordinates are illustrated in Figure 2.15(c).

23

www.manaraa.com

d 0 d 3

d 1 d 2

(a) A B-spline basis function, before refinement.

d 0 d 3

d 1 d 2

d 3

d R

d L

d L d R d 3 d ?

d 1
d L

d 1

d 0

d R

(b) The B-spline basis function labeled in preparation for refinement. The un-
known interval d?’s value is not needed to compute the refinement, since the
ordinate value will equal zero in every case.

d 0 d 3

d 1
d R

d L

c 1

c 2

(c) The refined B-spline basis function.

Figure 2.15: Basis Function Refinement using Knot Insertion.

24

www.manaraa.com

From this figure, we can derive expressions for the two non-zero ordinates resulting

from the refinement:

c1 =
d0 + d1 + dL

d0 + d1 + d2
(2.6)

c2 =
dR + d3

d1 + d2 + d3

. (2.7)

Note that after refinement the blending functions Bi1(u) and Bi2(u) have knot inter-

vals (d0, d1, dL, dR) and (d1, dL, dR, d3), respectively. Observe, also, that although d2

maps onto the edge with interval d3, the ordinate value resulting from the insertion

on this edge is always zero. Hence, the unknown interval d? value is not needed to

compute the refinement.

In our example, we derived expressions for c1 and c2 when the interval d2 was

split. We can similarly derive expressions for splits of the remaining intervals. For

ease we summarize all of the expressions in Table 2.1. In each case, the ordinate values

and the blending functions are given in increasing parametric order (left-to-right).

Split Interval c1 value c2 value Blending Function Intervals

d0
dL

d0+d1+d2
1

Bi1 : (dL, dR, d1, d2)
Bi2 : (dR, d1, d2, d3)

d1
d1+dL

d0+d1+d2

dR+d2+d3

d1+d2+d3

Bi1 : (d0, dL, dR, d2)
Bi2 : (dL, dR, d2, d3)

d2
d0+d1+dL

d0+d1+d2

dR+d3

d1+d2+d3

Bi1 : (d0, d1, dL, dR)
Bi2 : (dL, dR, d2, d3)

d3 1 dR

d1+d2+d3

Bi1 : (d0, d1, d2, dL)
Bi2 : (d1, d2, dL, dR)

Table 2.1: Ordinate Values Resulting from Blending Function Refinement

25

www.manaraa.com

d 0

e 0

e 1

e 2

e 3

d 1 d 2 d 3

Figure 2.16: The central control point has an ordinate value of one, while all other
ordinates are zero (in further diagrams, only the central ordinate will be shown). All
of the knot intervals shown here are equal to two.

The principle idea of this refinement operation, is expressed in Equation 2.5—

that a single B-spline blending function may be split into the sum of two scaled

blending functions with slightly different knot intervals. We can, of course, apply the

knot insertion operation multiple times to the blending function, breaking it into the

sum of several scaled blending functions.

We end this section by illustrating refinement on a bivariate blending function

with uniform knot intervals. This exercise should help solidify the refinement oper-

ation and process, which we will employ extensively in the simplification methods

of Chapters 4 and 5. The initial B-spline basis function on which we will operate is

depicted in Figure 2.16. Note that both the s and t knot intervals are initially all

equal to two. The central ordinate of the blending function is equal to one with all

remaining ordinates at zero.

We will begin refining B(s, t) halfway through interval d1. To do so, we apply

the corresponding rule from Table 2.1 (where dL = dR = 1) to produce two new

26

www.manaraa.com

d 0

B1 B2

1 1

e 0

e 1

e 2

e 3

d 2 d 3

5/61/2

Figure 2.17: Result of refining a bivariate blending function with central ordinates
labeled.

blending functions: B1(s, t) and B2(s, t). This works out to

B(s, t) =
1

2
B1(s, t) +

5

6
B2(s, t), (2.8)

where B1 and B2 have t intervals (2, 1, 1, 2) and (1, 1, 2, 2), respectively. The result

of this operation is illustrated graphically in Figure 2.17.

Now that B1 and B2 have been generated, we may operate on them separately.

For instance, refining B1 halfway through interval e0 produces B1,1 and B1,2:

B1(s, t) = 1 · B1,1(s, t) +
1

6
B1,2(s, t), (2.9)

where the s knot intervals for B1,1 and B1,2 are (1, 1, 2, 2) and (1, 2, 2, 2), respectively.

Similarly, we may refine B2 by dividing e2 in half, where the resulting expression is

B2(s, t) =
5

6
B2,1(s, t) +

1

2
B2,2(s, t), (2.10)

27

www.manaraa.com

where the s knot intervals for B2,1 and B2,2 are (2, 2, 1, 1) and (2, 1, 1, 2), respectively.

Notice that the s knot intervals for B2,1 and B2,2 are quite different from those for

B1,1 and B1,2, even though they originated from the same initial blending function.

By combining (2.8), (2.9) and (2.10), we can produce a single equation for the

original blending function:

B(s, t) =
1

2
B1(s, t) +

5

6
B2(s, t)

=
1

2

(

B1,1(s, t) +
1

6
B1,2(s, t)

)

+
5

6

(

5

6
B2,1(s, t) +

1

2
B2,2(s, t)

)

=
1

2
B1,1(s, t) +

1

12
B1,2(s, t) +

25

36
B2,1(s, t) +

5

12
B2,2(s, t).

The scaled blending functions are shown together graphically in Figure 2.18.

B1,1

B1,2 B2,1

B2,2

d 0 1 1

1

1

1

1

e 1

e 2

e 3

d 2 d 3

25/36

5/12

1/2

1/12

Figure 2.18: The original blending function refined to four smaller blending functions.
Each blending function’s central ordinate is labeled with its value.

28

www.manaraa.com

2.3 Least-Squares Fitting of Simplified T-Splines

Since removing control points from a T-spline surface is not exact in general, our

simplified surface will be an approximation of the original. To produce the approxi-

mation, we will use least-squares fitting as presented in [16].

Linear least-squares fitting is a well-researched topic, which is covered in most

introductory linear algebra textbooks[20]. In addition, several methods for performing

matrix operations on large (sparse and dense) systems have also been developed ([21]

is a good resource, but there are many others). This section reviews linear least-

squares fitting and its application to T-splines.

In general, least-squares is an optimization problem. That is, given a function

f(x0, . . . , xn; β0, . . . , βm) adjust the parameters of the function (β0, . . . , βm), such that

the squared-distance from the function to some set of input data (either continuous

or discrete values of x0, . . . , xn) is minimized. We can express the function to be

minimized with

S(β0, . . . , βm) =

∫

[f(x0, . . . , xn; βi) − g(x0, . . . , xn)]2 dx0 . . . dxn (2.11)

in the continuous case (where g is the known function) and

S(β0, . . . , βm) =
k

∑

i=0

[f(X1,i, . . . , Xm,i; βi) − Gi]
2 (2.12)

in the discrete case—where Gi are the k discrete samples corresponding to

f(X1,i, . . . , Xn,i). As taught in most introductory calculus classes, this type of prob-

lem is solved by finding the zeros of the function’s first derivative (∇S = 0), where

the partial derivatives are taken with respect to the function parameters (β0, . . . , βm).

In the case where f is linear in these parameters, the problem reduces to a system of

linear equations and is faster and easier to solve.

29

www.manaraa.com

Applying this general framework to the least-squares fitting of T-spline sur-

faces, we rewrite (2.11) substituting (2.4) for f :

S(P0, . . . ,Pn, w0, . . . , wn) =

∫∫

[

∑n

j=0 PjwjBj(s, t)
∑n

j=0 wjBj(s, t)
− G(s, t)

]2

ds dt (2.13)

where G(s, t) is the known surface being approximated by P(s, t). As should be

immediately evident, P(s, t) is linear in its control point parameters, but non-linear

in the control point weights. Thus, linear least-squares may be applied to a T-spline

surface only if the weights are known or may somehow be determined. In order to

guarantee this condition for simplification, we will derive an important relationship

between G(s, t) and P(s, t).

2.3.1 T-Spline Spaces

Let us define a T-spline space6 as the set of all T-splines that have the same mesh

topology, knot intervals and knot coordinate system—essentially, members of a T-

spline space may differ only in their geometries and weights. Clearly, if P and G

belong to the same T-spline space an exact solution to (2.13) exists.

A T-spline space S1 is called a subspace of S2 (denoted S1 ⊂ S2) if refining a

T-spline in S1 will produce a T-spline in S2
7. In other words, the topology and knot

intervals of S2 may be attained by refining any T-spline in S1. A nested sequence

(S1 . . .Sn) of T-spline satisfies S1 ⊂ S2 ⊂ · · · ⊂ Sn−1 ⊂ Sn. Figure 2.19 illustrates

the pre-images of such a nested sequence.

In the context of least-squares fitting, it would be helpful if we could guarantee

that we can apply linear least-squares fitting to any pair of T-splines T1 ∈ S1 and

T2 ∈ S2 where S1 ⊂ S2. However, in a T-spline space, the weights in (2.13) remain

free parameters and we do not yet have a method of determining them in a linear

6This definition relates closely to the definition of a spline space in [16].
7T-spline refinement operations are discussed in detail in Chapters 4 and 5

30

www.manaraa.com

1 2

n3

Figure 2.19: A nested sequence of T-spline spaces. Si may be generated by refining
Si−1 or any of its subsets.

least-squares fit. Because the weights prevent a linear fit, we define a weighted T-

spline space to include mesh topology, knot intervals, knot coordinate system and

weights (denoted Sw). Only the control point positions differ among members of a

weighted T-spline space.

The advantage of weighted T-spline spaces is that linear least-squares fitting

of a T-spline may be performed in a weighted T-spline space to any T-spline in its

superspace even if the weights of the T-spline being fitted are not known! To see why

this is the case, we restate (2.13):

S(P0, . . . ,Pn, w0, . . . , wn) =

∫∫

[

∑n

j=0 PjwjBj(s, t)
∑n

j=0 wjBj(s, t)
− G(s, t)

]2

ds dt

31

www.manaraa.com

In this equation, we assume that P(s, t) ∈ Sw
a , that G(s, t) ∈ Sw

b and that Sw
a ⊂ Sw

b .

This implies that G(s, t) is a T-spline also and therefore expands to

G(s, t) =

∑ñ

i=0 P̃iw̃iB̃i(s, t)
∑ñ

i=0 w̃iB̃i(s, t)
,

where G(s, t)’s control points, weights and blending functions are denoted with a

overscript tilde. Performing this substitution, we can now rewrite 2.13 as

S(P0, . . . ,Pn, w0, . . . , wn)

=

∫∫

[

∑

PjwjBj(s, t)
∑

wjBj(s, t)
−

∑

P̃iw̃iB̃i(s, t)
∑

w̃iB̃i(s, t)

]2

ds dt (2.14)

Because of the space relationship between G(s, t) and P(s, t), we know that the

denominators of their expanded expressions are equal:

n
∑

j=0

wjBj(s, t) =
ñ

∑

i=0

w̃iB̃i(s, t). (2.15)

Therefore, we can expand (2.15) to a system of linear equations and solve for wi

exactly8 After doing so, we may similarly derive a linear system and use linear least-

squares fitting to solve for the geometries of P(s, t) as well.

2.3.2 Linear Least-Squares

This section explores linear least-squares T-spline fits in more detail. T-spline re-

finement creates a set of new blending functions9 and each blending function before

8Note that this reasoning rests on an unproven conjecture on the linear independence of the
T-spline’s blending functions. So far, no counterexample has been produced and the conjecture is
believed to be true.

9Precisely how the new blending functions are computed via refinement is the topic of the next
chapter.

32

www.manaraa.com

refinement may be written as a linear combination of the new functions:

Bi(s, t) =

ñ
∑

j=0

ci,jB̃j(s, t), (2.16)

where the Bi are the blending functions of the original T-spline (T1 ∈ Sw
1) and the

B̃j are the blending functions of the refined T-spline (T2 ∈ Sw
2). Each of the refined

blending functions is assigned a non-negative scalar weight cj,i. Since Sw
1 ⊂ Sw

2 must

hold for a linear fit, we require that (2.15) holds and substitute for Bi using (2.16):

n
∑

i=0

wi

[

ñ
∑

j=0

ci,jB̃j(s, t)

]

=

ñ
∑

j=0

w̃jB̃j(s, t). (2.17)

Expanding this equation and combining blending function terms yields a linear sys-

tem:

M2←1w = w̃ (2.18)

where w = [w0, . . . , wn]
T , w̃ = [w̃0, . . . , w̃ñ]

T and M2←1 is the linear transformation

matrix, whose entry at row i and column j is ci,j. We call such a matrix a T-spline

refinement matrix, where Mj←i computes the refinement of Ti to Tj.

Since T2 has more blending functions than T1, M2←1 has more rows than

columns. This implies that the system is over-constrained. However, for the weights,

we require that an exact solution exists. Thus, we may solve the system in the

least-squares sense to produce the exact solution for T1’s weights.

We next proceed to calculate T1’s control points. Fortunately, this derivation

falls out very cleanly. The denominators in (2.14) are equal and known, so we will

rewrite them simply as a weight function, w(s, t):

S(P0, . . . ,Pn, w0, . . . , wn) =

∫∫

[

∑

PjwjBj(s, t) −
∑

P̃iw̃iB̃i(s, t)

w(s, t)

]2

ds dt.

33

www.manaraa.com

Then, by coupling weights and geometries (denoted Pw
i = wiPi), we can simplify this

expression even further:

S(Pw
0 , . . . ,Pw

n) =

∫∫

[

∑

Pw
j Bj(s, t) −

∑

P̃w
i B̃i(s, t)

w(s, t)

]2

ds dt.

From this point, solving for the weighted geometries is derived in the same way as

solving for the weights—the known weights function (w(s, t)) factors out of both

sides of the equation just as B̃j(s, t) does in (2.17). So, solving for Pw
i to minimize

S(Pw
0 , . . . ,Pw

n) means solving

M2←1P
w = P̃w

in the least-squares sense. Essentially, this means that we can combine the control

point geometries (Pi = (xi, yi, zi)) and their weights into a four-tuple (wi·xi, wi·yi, wi·

zi, wi) and then use the same method to solve for each component.

Before concluding this chapter, it is important to note that methods do exist

for performing non-linear least squares fits of NURBS surfaces to discrete data points.

See [22], [23] and [24] for some approaches. Unfortunately, these methods are com-

plex, slow and do not easily extend to the continuous case. In addition, the added

degrees of freedom of T-spline weights actually increase the complexity of the sim-

plification problem. Therefore, we limit this thesis to the linear least-squares cases.

Application of these non-linear fitting methods to T-spline simplification may be a

fruitful direction for future research.

34

www.manaraa.com

Chapter 3

Related Work

Although T-spline surfaces are new, techniques to simplify NURBS and other

surface types have been given some attention. Many of the principles and methods in

such techniques relate to T-spline simplification, so we will review them here. First,

in Section 3.1 we define specifically the bounds of the simplification problem that this

thesis addresses and then review related simplification methods. NURBS surface sim-

plification is reviewed in Section 3.2 and subdivision surface simplification is covered

in Section 3.3. Also, since T-spline knot insertion is a significant contribution to this

thesis, Section 3.4 reviews research related to that topic.

3.1 Simplification

As overviewed in the introduction, simplification is the generation of an exact or

approximate representation of a free-form surface model that has fewer control points

than the original. While concise, this definition differs slightly from the simplification

problem addressed in this thesis and its related work, which has a few additional

constraints:

• The parameterization of the surface is not altered by the simplification. For

many models there may exist simpler representations that alter the param-

eterization of the surface, but identifying such models focuses more on re-

parameterization than on the reduction of the input model.

35

www.manaraa.com

• The degree of the surface is not reduced through the simplification. In certain

cases, a reduction of control points may be attained for a free-form surface by

reducing the degree of the polynomials that represent the surface. We consider

specifically the degree three case and do not alter the degree of the surface to

reduce control points.

• The parametric position of control points in the control mesh is not altered

in the simplification. Each control point in a NURBS, subdivision or T-spline

surface exists at a specific parameter position. Some simplifications for a surface

could be generated by removing existing control points from a mesh, inserting

a new (not formerly removed) control point into the mesh and then calculating

an approximation. Since we view each control point as storing some geometric

information, we constrain our simplification to eliminating redundant control

points already in a surface’s control mesh.

• As mentioned in the last chapter, we consider only the simplifications where

a linear least-squares fit is possible. The additional difficulties inherent in the

non-linear fit are not addressed as part of this work and have yet to be addressed

with NURBS surface simplification.

To summarize these constraints, we approach the simplification problem as

the removal of control points from an existing control mesh while keeping the other

properties of the mesh (parameterization, degree and the weight surface) fixed.

3.2 NURBS Surface Simplification

For the most part, simplification methods for NURBS surfaces are direct extensions

of methods developed for simplifying NURBS curves. The majority of NURBS sim-

plification methods treat first the curve case and then apply the same method to the

surface case. Due to the rigid topological restrictions of NURBS surfaces, one is really

36

www.manaraa.com

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

(a) The knot s4 is selected to be removed.

s1 s2 s3 s5 s6 s7 s8 s9 s10

(b) Removing s4 requires that all control
points in its column be removed, because
the NURBS surface definition requires all
control points to be arranged in an array.

Figure 3.1: Removing a single knot from a NURBS surface requires the removal of
all control points residing on that knot.

forced to take this approach, since no directly local simplification is permitted. Thus,

most of the NURBS surface literature related to T-spline simplification treats mainly

curve simplification.

The goal of simplification is the removal of control points from a curve or

surface. In a NURBS curve, control points correspond to a non-decreasing set of

parameter values called knots. These knots are typically presented in an ordered

list called a knot vector [2]—e.g., [t0, . . . , tn]. The number of control points present

in a NURBS curve is a function of the number of knots. Because of this functional

relationship, NURBS control point removal is often referred to as knot removal. Since

NURBS surfaces are bivariate, one knot vector is associated with each parameter

variable and NURBS surface control points correspond in number to the product of

the number of knots in the two knot vectors. Accordingly, while a single knot removal

37

www.manaraa.com

from a NURBS curve results in the removal of a single control point, knot removal

from a NURBS surface results in the removal of an entire row or column of control

points as shown in Figure 3.1. Notably, this poses a significant limitation on knot

removal for NURBS surfaces—a limitation which T-splines overcomes.

One of the few global approaches to NURBS curve and surface knot removal is

presented by Lyche and Mørken in [25]. This approach develops a process for selecting

knots to be removed from a curve or surface. The process divides the removal task

into three distinct operations: Rank, Remove and Approximate. In the Rank opera-

tion, each knot is assigned a ranking number related to the maximum perturbation

produced by fitting the surface with the removed knot to that of the original surface.

Ranking numbers are used instead of the perturbation metric directly in order to pro-

mote uniform knot removal. Once knots have been ranked, the Remove strategically

removes knots until the maximum number of removals (within a certain perturbation

tolerance) is reached. Remove uses the Approximate operation to determine pertur-

bation errors, by fitting a simplified NURBS to the original. By performing a binary

search on the number of possible removals, the Remove operation finds a reasonable

set of knots to remove from a NURBS curve or surface.

An alternative approach to [25]’s global knot removal is that of spline decom-

position [16] by Dæhlen and Lyche. This research presents a generalized method

for fitting any type of spline to an input data set. The complex input splines are

fitted with an over-simplified approximation, which is then successively refined until

a fit within the desired tolerance is achieved. For NURBS curves and surfaces the

refinement steps are demonstrated using knot insertion. When a parametric region

of the approximation has an error above tolerance, that region is refined at a knot

value in the input model that divides the knots in the region in half. Dæhlen and

Lyche’s work also presents the idea of nested sequences of spline spaces, which defines

a relationship between a simple mesh and refinements of that mesh. Essentially, the

38

www.manaraa.com

nested sequence concept states that two meshes are members of the same sequence if

the topology of one mesh may be attained via refinement of the other. The extension

of this concept to T-splines is an important one that was described in the previous

chapter.

Related closely to NURBS decomposition, hierarchical NURBS [13] presents a

method for editing a NURBS model at multiple resolutions. The hierarchical NURBS

scheme permits local refinement of a model, but does so at the cost of maintaining

a hierarchy. Each level of the NURBS hierarchy stores geometry offsets from the

previous (coarser) level. This framework allows surface offsets to be localized to a

desired region of the mesh, permitting local refinement. Forsey and Wong [26] use the

hierarchical NURBS framework to automatically generate a simpler, locally refined

surface. The algorithm presented in [26] generates each level of the hierarchy at half

the resolution of the previous level with added smoothness constraints and curvature

penalties. Since this method closely resembles T-spline simplification (it analogously

approximates a more complex NURBS with a locally refined surface representation),

this proves a useful comparison to the results demonstrated in this thesis.

Some researchers approach knot removal as simply the inverse of knot insertion.

For example, Tiller [27] derives an algorithm for exact removal of a knot from a

NURBS curve. Tiller’s main contribution is more practical than theoretical: his work

is largely pseudocode and centers on presenting a packaged algorithm for removing

unnecessary knots without modifying the curve’s parameterization or geometry. [27]

also includes a proof showing that maximum NURBS control point deviation is an

upper bound on curve deviation—a property that is put to good use in methods

developed here.

Like Tiller, Eck and Hadenfeld focus on the removal of a single knot from a

curve [28]. In their work, they improve somewhat on Tiller, by focusing on deriving

formulas that produce good approximations for the discrete `2 and discrete and con-

39

www.manaraa.com

tinuous `∞ norms. One useful contribution in [28] is a proof showing that fitting may

be performed locally on a NURBS curve/surface after removal, which may be used

in T-spline simplification to expedite the least-squares fitting process.

3.3 Subdivision Surface Simplification

While substantial work has been done on simplifying NURBS surfaces, subdivision

surface simplification has been given little significant attention. Most likely due to

the complexity that arbitrary topology introduces to the problem, most of the related

research attempts to impose a new parameterization onto existing models instead of

trying to retain topology during simplification.

One of the few direct subdivision surface simplification approaches is presented

in [17] by Jeong et al. This work develops a method for simplifying Loop subdivision

surfaces, by combining a quadric error metric with simple topological operations on

a Loop surface’s triangle mesh. Because T-spline surfaces generate rectangular (and

not triangular) domains, it is difficult to extend Jeong et al.’s approach to T-splines.

There are several re-parameterization-based approaches to the simplification

problem. Typically, work in this area takes as input some form of dense data (e.g.,

point clouds or dense triangle meshes), derives a parameterization (either automat-

ically or semi-automatically) and then fits the resulting subdivision surface to the

dense input data. Eck and Hoppe [29], for example, construct a parameterization, to

which a network of NURBS patches are fitted using a two-step linear least-squares

and parameter correction technique. After initial fitting is performed, the patches are

refined to generate a better fit with the input data. Ma and Zhao [30] use a similar

approach but reduce the time cost of fitting significantly over Eck and Hoppe.

In [31] He et al. generate a parameterization for an existing model and then

fit a T-spline model using the generated parameterization. After initial fitting, the

40

www.manaraa.com

T-spline mesh is locally refined in locations where the fitting error exceeds the user-

specified tolerance.

Tangentially, there has been a lot of work done on triangular mesh simplifi-

cation for multiresolution / level-of-detail representation of models (see for example,

[32], [33] and [34]), but techniques in this research area are specialized to triangle

meshes and cannot reasonably be extended to subdivision surface (or ultimately T-

spline) meshes.

3.4 NURBS Knot Insertion

Refinement is one of the important operations for a NURBS curve or surface and,

as such, much research has been devoted to it. Probably the earliest related method

is the de Boor algorithm [4] for B-spline curve evaluation. While the de Boor algo-

rithm is specifically for evaluating a NURBS at a given parameter value, most of the

subsequent developments relate closely to his method in some way.

As we have already seen in Section 2.1.1, the Boehm algorithm computes

the result of inserting a single knot into a NURBS curve [5], and Boehm uses his

method to present a supporting proof of the de Boor evaluation algorithm. Concur-

rent with Boehm, Cohen et al.ḋeveloped the Oslo Algorithm [6]. The Oslo Algorithm

is presented in iterative and recursive forms and computes the discrete control point

positions (the so-called discrete B-splines) for a refined NURBS curve as linear combi-

nations of the original curve’s control points. Both Boehm’s and Cohen et al.’s work

supply stable and practical means for refining a NURBS curve or surface, making

NURBS knot insertion a simple and reliable procedure.

Although knot insertion had been fully developed, new methods for under-

standing and thinking about NURBS helped lay the foundation for T-spline local

refinement. Ramshaw’s blossoming idea [7] provides an elegant framework for under-

standing NURBS knot insertion. In blossoming each NURBS control point is assigned

41

www.manaraa.com

a polar label, which identifies both the curve’s degree and the knot values local to that

control point. Ramshaw’s useful insight imparts a simple geometric interpretation to

NURBS knot insertion and other related operations.

Another perspective that can be useful is the alternative notation of knot

intervals [12][35]. This alternative notation assigns non-negative knot interval values

to the spans between knots in a NURBS curve instead of assigning an absolute knot

value to the knots. As we have seen in the previous chapter, knot intervals offer a

very intuitive method for computing the insertion of a knot into a NURBS curve.

42

www.manaraa.com

Chapter 4

T-Spline Simplification using Iterative Refinement

This chapter reviews in detail a method for T-spline simplification based on

iterative refinement, published in [1]. Chapter 5 presents a new T-spline simplification

method based on iterative simplification.

Implicit in its name, this chapter’s approach produces a simplification by ap-

plying successive refinements to a model. While refining is not intuitively associated

with simplification, the key initial step is to generate an over-simplified version of

the model to be simplified and then to refine it until a desired approximation to

the original is achieved. In a sense, this approach is a “top-down” approach to the

simplification problem, resolving large differences between the simplified model and

the original first and then moving on to higher resolution with each step. The next

chapter examines the “bottom-up” counterpart to iterative refinement.

Section 4.1 examines T-spline local refinement—an essential operation of this

simplification method. Section 4.2 applies local refinement, T-spline spaces and con-

cepts from spline decomposition to develop a method for T-spline simplification.

4.1 T-Spline Local Refinement

To simplify the presentation this section focuses specifically on the refinement of

T-splines without extraordinary points. The extension of this algorithm to handle

extraordinary points is presented in Appendix A.

43

www.manaraa.com

A
P1 P2 P3 P4

(a) Control point A is a desired insertion
into this T-spline.

A
P1 P2 P3 P4

(b) The additional control point insertions
(shown in green) necessary to permit the
insertion of A.

Figure 4.1: According to the original T-spline paper [14], A may only be inserted if
the t knot intervals for the control points P1,P2,P3 and P4 are equal.

The problem of T-spline local refinement is this: given an input T-spline and

a set of control point insertions on the edges of its T-grid, compute the control point

positions of the new mesh that will produce a surface equivalent to the original.

The original T-spline paper[14], presented a solution to this problem in which

a new control point could only be inserted on an edge if the control points with

blending functions affected by the insertion had exactly matching local knot vectors

in the parameter direction perpendicular to that of the insertion edge, as illustrated

in Figure 4.1. If this condition is not met, some additional control points are first

inserted so as to satisfy the condition, as shown in Figure 4.1(b). A problem with this

algorithm is that the sequence of additional control point insertions could be long,

and it is not clear that the sequence would always terminate. The improved local

refinement algorithm overcomes these hurdles.

44

www.manaraa.com

d-1

d0

B :[*,d ,d ,d]-1 -1 0 1

B :[d ,d ,d ,d]0 0-1 1 2

B :[d ,d ,d ,d]1 1 0 2 3

B :[d ,d ,d ,d]2 2 1 3 4

B :[d ,d ,d ,d]3 3 2 4 5

B :[d ,d ,d ,*]4 4 3 5

d1

d2

d3

d4

d5

P0

P1
P2

P3

P4P-1

Figure 4.2: Basis functions and their local knot intervals in a simple NURBS curve.

4.1.1 NURBS Knot Insertion Revisited

We begin by reviewing the mathematical foundations of the refinement of a NURBS

curve in a way that parallels our development of the T-spline refinement algorithm.

Recall that each control point in a NURBS curve has an associated B-spline

basis function that is defined using the neighboring knot intervals on the control

polygon. Figure 4.2 shows the knot intervals for the basis functions of each of a

curve’s control points. If the knot intervals for a basis function match those on the

control polygon, we say that the function agrees with the control polygon or that the

basis function is coupled to the control polygon.

If we decouple the B-spline basis functions of the curve from the control poly-

gon (i.e., the knot intervals for each basis function need not agree with the control

polygon), then we can add control points to the curve’s control polygon without

changing the blending functions. If the added control points do not have blending

functions associated with them, they will not alter the shape of the curve. This is

illustrated in Figure 4.3, in which Pk is inserted but no blending function is assigned

to it, so the curve is unchanged. Note that this is not a NURBS curve, because the

blending functions of P0,P1,P2 and P3 do not agree with the control polygon, and

45

www.manaraa.com

d-1

d0

d1

dL dR

d3

d4

d5

P0

P1
P2Pk

P3

P4P-1

Figure 4.3: Modifying the control polygon. The new control point Pk does not yet
have a geometric position assigned, but is simply placed topologically into the control
polygon. When the process completes, Pk will have both a blending function and a
geometric location. Note also that d2 = dL + dR.

because Pk has no blending function. In order to create a valid NURBS, we will need

to bring the decoupled blending functions into agreement with the modified control

polygon.

To bring each decoupled blending function into agreement with the control

polygon, we must modify each offending blending function. The insertion of Pk has

introduced a new knot into the control polygon, so refining each offending blending

function to include the new knot will bring it into agreement with the control polygon:

B0(t) = B0
[d

−1,d0,d1,dL](t) +
dR

d0 + d1 + d2
B1

[d0,d1,dR,dL](t)

B1(t) =
d0 + d1 + dL

d0 + d1 + d2
B1

[d0,d1,dL,dR](t) +
dR + d3

d1 + d2 + d3
Bk

[d1,dR,dL,d3]
(t)

B2(t) =
d1 + dL

d1 + d2 + d3
Bk

[d1,dL,dR,d3]
(t) +

dR + d3 + d4

d2 + d3 + d4
B2

[dL,dR,d3,d4](t)

B3(t) =
dL

d2 + d3 + d4

B2
[dL,dR,d3,d4]

(t) + B3
[dR,d3,d4,d5]

(t)

46

www.manaraa.com

where Bi
[a,b,c,d](t) denotes a B-spline basis function defined by knot intervals [a, b, c, d]

and associated with control point Pi.

After refining the affected blending functions to include the newly inserted

knot, note that each of the resulting blending functions corresponds those implied by

the control polygon. Recalling the equation of the curve (
P

PiwiBi(t)
P

wiBi(t)
), we multiply

each refined blending function by its coefficients—for convenience we will denote

Qi = (xi ·wi, yi ·wi, zi ·wi, wi) and the blending functions of the control polygon1 with

B̃i(t):

Q0B0(t) = Q0B̃0(t) +
dR

d0 + d1 + d2

Q0B̃1(t)

Q1B1(t) =
d0 + d1 + dL

d0 + d1 + d2

Q1B̃1(t) +
dR + d3

d1 + d2 + d3

Q1B̃k(t)

Q2B2(t) =
d1 + dL

d1 + d2 + d3
Q2B̃k(t) +

dR + d3 + d4

d2 + d3 + d4
Q2B̃2(t)

Q3B3(t) =
dL

d2 + d3 + d4
Q3B̃2(t) + Q3B̃3(t).

Since these terms are all summed together in the curve equation, we may use the

commutativity and associativity of addition to group the expressions in terms of like

blending functions. This grouping produces the geometries and weights of the new

control points (Q̃i) from the original ones:

Q̃0 = Q0

Q̃1 =
dR

d0 + d1 + d2
Q0 +

d0 + d1 + dL

d0 + d1 + d2
Q1

Q̃k =
dR + d3

d1 + d2 + d3
Q1 +

d1 + dL

d1 + d2 + d3
Q2

1The equivalence of the control polygon’s implied blending functions (of the form B̃i) with those
of the refined, decoupled blending functions (of the form Bi

[a,b,c,d]) may be quickly verified from
Figure 4.3.

47

www.manaraa.com

Q̃2 =
dR + d3 + d4

d2 + d3 + d4
Q2 +

dL

d2 + d3 + d4
Q3

Q̃3 = Q3.

This result is equivalent to that produced using the conventional method for NURBS

curve refinement.

4.1.2 The T-Spline Local Refinement Algorithm

We now describe an algorithm for T-spline refinement, based on the curve refinement

algorithm in Section 4.1.1. The steps of that algorithm can be summarized:

1. Decouple the blending functions from the control polygon.

2. Modify the control polygon as desired.

3. Resolve disagreement by refining offending blending functions.

Step 3 will need some slight modification when applied to T-spline local refinement.

Figure 4.4(a) shows a decoupled T-grid and a newly inserted control point Pk.

Figure 4.4(b) labels those blending functions that now disagree with the T-grid. We

now move on to the resolution step. By inserting into the intervals of the blending

functions, we have:

B0(t) = B0
[∗,2,2,1][2,2,2,2](s, t) +

1

6
B1

[2,2,1,1][2,2,2,2](s, t)

B1(t) =
5

6
B1

[2,2,1,1][2,2,2,2](s, t) +
1

2
Bk

[2,1,1,2][2,2,2,2](s, t)

B2(t) =
1

2
Bk

[2,1,1,2][2,2,2,2](s, t) +
5

6
B2

[1,1,2,2][2,2,2,2](s, t)

B3(t) =
1

6
B2

[1,1,2,2][2,2,2,2](s, t) + B3
[1,2,2,∗][2,2,2,2](s, t).

48

www.manaraa.com

P0 P1 P2

Pk

P3

(a) T-Spline control grid before refinement.
Only certain control points are labeled for use
in this example. The control point Pk is not
yet inserted in the grid. All intervals in the
grid have a value of 2 and Pk lies halfway
(parametrically) down its associated edge.

P0 B1B0 B2 B3P1 P2

Pk

P3

(b) Blending functions decoupled from a T-
spline control grid. The local s knot intervals
for each blending function are: B0:[∗, 2, 2, 2],
B1:[2, 2, 2, 2], B2:[2, 2, 2, 2], and B3:[2, 2, 2, ∗].
The t knot intervals are [2, 2, 2, 2] for each
blending function and are not affected by the
insertion of Pk.

Figure 4.4: A T-spline control grid before refinement at Pk.

49

www.manaraa.com

Here, the refined B-spline basis functions for control point Pi are denoted

Bi
[a,b,c,d][e,f,g,h], where [a, b, c, d] are the knot intervals for the s parameter and [e, f, g, h]

are the knot intervals for the t parameter2.

Since all blending functions now agree with the T-grid, the process terminates.

The resulting T-spline control point geometries are given by

P̃0 = P0

P̃1 = 1
6
P0 + 5

6
P1

Pk = 1
2
P1 + 1

2
P2

P̃2 = 5
6
P2 + 1

6
P3

P̃3 = P3,

(4.1)

as illustrated in Figure 4.5.

We now refine the mesh in Figure 4.5 one step further, by inserting a control

point at Pk+1 as indicated in Figure 4.6. Now, the decoupled blending functions

associated with points P1, P4, P5 and P6 disagree with the T-grid. So, we refine

those blending functions:

B4(t) = B4
[2,2,2,2][∗,2,2,1](s, t) + 1

6
B1

[2,2,2,2][2,2,1,1](s, t)

B1(t) = 5
6
B1

[2,2,1,1][2,2,1,1](s, t) + 1
2
Bk+1

[2,2,1,1][2,1,1,2](s, t)

B5(t) = 1
2
Bk+1

[2,2,2,2][2,1,1,2](s, t) + 5
6
B5

[2,2,2,2][1,1,2,2](s, t)

B6(t) = 1
6
B5

[2,2,2,2][1,1,2,2](s, t) + B6
[2,2,2,2][1,2,2,2](s, t).

(4.2)

2To handle the arbitrary topology case, each control point is assigned it’s own orientation in the
mesh, so the knot intervals are given in the point’s local parameterization—i.e., in general s and t

are local to each control point.

50

www.manaraa.com

P0 P1 P2Pk P3
~ ~ ~ ~

Figure 4.5: T-spline control polygon after refinement. Each of the labeled control
points is computed as a linear combination of the original control points as given by
(4.1).

Notice that, unlike the previous example, two blending functions still do not agree

with the T-grid, specifically, B1
[2,2,2,2][2,2,1,1](s, t) and Bk+1

[2,2,1,1][2,1,1,2](s, t) (originating

from B4(s, t) and B1(s, t), respectively) do not agree, as emphasized in Figure 4.7.

It is clear that further blending function refinement alone will not result in

agreement. For example, refining B1
[2,2,2,2][2,2,1,1](s, t), we have

B1
[2,2,2,2][2,2,1,1](s, t) =

5

6
B1

[2,2,1,1][2,2,1,1](s, t) +
1

2
Bk

[2,1,1,2][2,2,1,1](s, t), (4.3)

which may then be substituted into the equation for B4(s, t) in (4.2). Unfortunately,

this additional refinement produces another blending function that does not agree

with the mesh: Bk
[2,1,1,2][2,2,1,1](s, t).

The solution to this problem is to alter the mesh by placing a new control

point Pk+2 into the location demanded by Bk
[2,1,1,2][2,2,1,1](s, t) and Bk+1

[2,2,1,1][2,1,1,2](s, t)

(as depicted in Figure 4.9), bringing those blending functions into agreement. How-

ever, Bk+1
[2,2,2,2][2,1,1,2](s, t) and Bk

k(s, t) (the blending function associated with Pk before

51

www.manaraa.com

P0 P1

P5

P6

P4

P2Pk

Pk+1

P3

Figure 4.6: T-spline control polygon before refining at Pk+1. To match other control
points P̃0, ..., P̃3 have been rewritten with the tilde removed (while retaining their
positions from Figure 4.5).

P0 P1

P5

P6

P4

P2Pk

Pk+1

P3

(a)

P0 P1

P5

P6

P4

P2Pk

Pk+1

P3

(b)

Figure 4.7: Blending functions out-of-agreement with the T-spline control grid.
Above, (a) and (b) show diagrams of B1

[2,2,2,2][2,2,1,1](s, t) and Bk+1
[2,2,1,1][2,1,1,2](s, t), re-

spectively. The blending function diagrams emphasize the locations of each function
and its knots.

52

www.manaraa.com

P0 P1

P5

P6

P4

P2Pk

Pk+1

P3

Figure 4.8: Diagram of Bk
[2,1,1,2][2,2,1,1](s, t) whose knots do not completely correspond

to the knots implied by the underlying mesh.

P0 P1

P5

P6

P4

P2Pk

Pk+2Pk+1

P3

Figure 4.9: A mesh modification prompted by blending functions in disagreement
with the mesh. Pk+2 and its incident edges were added to the mesh, to match the
knots implied by refined blending functions (see Figure 4.7(b) and Figure 4.8).

53

www.manaraa.com

modifying the mesh) now disagree with the mesh. Refinement of these functions yields

Bk(s, t) = 5
6
Bk

[2,1,1,2][2,2,1,1](s, t) + 1
2
Bk+2

[2,1,1,2][2,1,1,2](s, t)

Bk+1
[2,2,2,2][2,1,1,2](s, t) = 5

6
Bk+1

[2,2,1,1][2,2,1,1](s, t) + 1
2
Bk+2

[2,1,1,2][2,1,1,2](s, t).

(4.4)

Substituting (4.4) and (4.3) into (4.2) and expanding the expressions, we have:

B4(s, t) = B4
[2,2,2,2][2,2,2,1](s, t) +

5

36
B1

[2,2,1,1][2,2,1,1](s, t) +
1

12
Bk

[2,1,1,2][2,2,1,1](s, t)

B1(s, t) =
5

6
B1

[2,2,1,1][2,2,1,1](s, t) +
1

2
Bk+1

[2,2,1,1][2,1,1,2](s, t)

B5(s, t) =
5

12
Bk+1

[2,2,1,1][2,2,1,1](s, t) +
1

4
Bk+2

[2,1,1,2][2,1,1,2](s, t) +
5

6
B5

[2,2,2,2][1,1,2,2](s, t)

B6(s, t) =
1

6
B5

[2,2,2,2][1,1,2,2](s, t) + B6
[2,2,2,2][1,2,2,2](s, t)

Bk(s, t) =
5

6
Bk

[2,1,1,2][2,2,1,1](s, t) +
1

2
Bk+2

[2,1,1,2][2,1,1,2](s, t).

Each of these refined blending functions now agrees with the T-grid, so the resolution

process terminates.

Grouping by blending functions as before, we compute the weights and control

points for the modified T-spline:

P̃1 =
5

6
P1 +

5

36
P4

P̃4 = P4

P̃5 =
5

6
P5 +

1

6
P6

P̃6 = P6

P̃k =
5

6
Pk +

1

12
P4

54

www.manaraa.com

Pk+1 =
5

12
P5 +

1

2
P1

Pk+2 =
1

2
Pk +

1

4
P5.

This example introduced a final element of the T-spline refinement algorithm—a

vertex insertion operation to resolve disagreements of blending functions with the T-

grid. Adding this step to our process, we produce our final T-spline local refinement

algorithm.

Algorithm 4.1 T-Spline Local Refinement

Inputs: A T-spline T with control points Pi, weights wi and blending functions Bi.
A set of topology modifications M to perform on T .

Output: The T-spline T includes the modifications M and is equivalent to the input.

1: P̃ ⇐ {Pi}
2: B ⇐ {(wi, B

T
i)}

3: Apply M to T—add control points and/or edges
4: while {Bi

j} 6= {BT
j } do

5: for all (wi
j, B

i
j) ∈ B do

6: if BT
j is more refined than Bi

j then

7: add a knot from BT
i to Bi

j using refinement: wi
jB

i
j = wi

j(c1B̃
i
j + c2B̃

i
k)

8: B ⇐ B − (wi
j, B

i
j)

9: B ⇐ B
⋃

(wi
j · c2, B̃

i
k)

10: B ⇐ B
⋃

(wi
j · c1, B̃

i
j)

11: else if Bi has a knot that is not in BT
i then

12: insert a vertex at Bi
j’s knot value into the T-grid

13: end if

14: end for

15: end while

16: for all Pj do

17: Pj ⇐
∑

i w
i
jP̃i where wi

j ∈ (wi
j, B

i
j) ∈ B and P̃i ∈ P̃

18: wj ⇐
∑

i w
i
j where wi

j ∈ (wi
j, B

i
j) ∈ B

19: end for

For the presentation of Algorithm 4.1, we adopt an indexing scheme that

distinguishes between the new T-spline’s control points and those of the original.

A superscript indicates the index of the control point with which a variable was

associated before refinement and a subscript references the control point at which

55

www.manaraa.com

the blending function’s central knot currently resides3—e.g., Bi
j is centered at point

Pj and is a portion of the blending function, Bi
i that was originally centered at Pi.

We will overload this notation by referring to the blending functions implied by the

current T-grid as BT
j , which denotes the blending function implied by the current

T-grid at point Pj.

We will now discuss each line of the algorithm:

Line 1 Copy the original control points (coordinates and weights) before any modi-

fication is done. The new control points are given in terms of these.

Line 2 Decouple the blending functions from the mesh by storing them in a separate

data structure. Pair each blending function with its associated weight, which

will be scaled during refinement. The scale values of the new blending functions

resulting from refinement are multiplied by and stored in the weight portion of

the pair. The blending functions are stored as a reference to the control point

with which they are associated, and their s and t knot intervals.

Line 3 We restrict topology modifications to splitting edges in the T-grid, enforcing

that new edges be created between control points as required for a T-spline4.

Any new edges may also be split in the modification, as long as the T-spline

rules hold. The modifications are the main input to the algorithm and are

supplied by the user.

Lines 4–15 The main resolution loop. This loop terminates when all of the refined

blending functions match those implied by the T-grid. This means that the

3This alternate notation has its weaknesses. Namely, it is ambiguous with regard to the knot
intervals of a blending function. For example, a refinement operation on Bi

j results in two scaled

blending functions: Bi
j and Bi

k. In the notation, the latter Bi
j is indistinguishable from the former,

even though it is more refined. Since this ambiguity only occurs within a single refinement step, we
only have need to make a distinction there.

4The T-spline definition in [14] requires a T-mesh to follow two rules: Rule 1 The sum of knot
intervals on opposing sides of any face in the T-mesh must be equal. Rule 2 If a T-junction on one
side of a face can be connected to a T-junction on an opposite side of the face (thereby splitting the
face into two faces) without violating Rule 1, that edge must be included in the T-mesh.

56

www.manaraa.com

blending functions residing at a control point in the grid have the same local

knot intervals as indicated by the grid at that point.

Lines 5–13 Loop over all of the blending functions, either refining the blending func-

tions to match the mesh or refining the mesh to match the blending functions.

Line 6 Compare the knot intervals implied by the mesh to those in the current blend-

ing function—if the mesh is more refined than the current blending function,

modify the blending function (lines 7–10).

Line 7 Refine the current blending function (Bi
j), as indicated in Table 2.1—the

current blending function is split into two scaled, refined blending functions.

Line 8–10 Remove the current blending function from the set and add the result of

refinement into the set. The scale values are stored by multiplying them by the

weight of the current blending function.

Lines 11–13 If a knot in the current blending function does not appear in the mesh,

place a vertex at the knot location. It might be necessary to create new edges

connecting the new vertex to other vertices that align with it parametrically.

Lines 16–19 Compute the new weights (wj) and control points (Pj) as linear com-

binations of old control points (P̃i).

Observe that, aside from the initial modification, no new knots are introduced

into the T-grid. This follows directly from the central while loop of the algorithm—

any blending function or mesh modifications within the loop have to occur at param-

eter positions already introduced into the T-grid before the loop. This observation

leads to the following:

Theorem 4.1 Let T denote a finite T-spline surface and M denote a finite set of

topological modifications to T subject to the T-mesh rules in [14]. If M is applied to

T using Algorithm 4.1, then the algorithm will terminate in a finite number of steps

57

www.manaraa.com

and the resulting T-spline, T ′, produces a surface exactly equivalent to the surface of

T .

Proof The proof of Theorem 4.1 has two parts:

First, we show that the process terminates in a finite number of steps. Because

the central loop of Algorithm 4.1 adds no new knots to the mesh, the most refined

mesh extends all knot lines fully across the mesh—terminating in a NURBS equivalent

mesh.

Second, we show that P′(s, t) ≡ P(s, t). From (2.4), this means that

∑

i P
′

iw
′

iB
′

i(s, t)
∑

i w
′

iB
′

i(s, t)
≡

∑

i PiwiBi(s, t)
∑

i wiBi(s, t)
.

Since our process uses refinement to derive each of the new blending functions, after

running Algorithm 4.1 we have:

wiBi(s, t) =
∑

j

wi
jB

i
j(s, t).

The termination condition also implies ∀j
[

Bi
j(s, t) ≡ BT

j (s, t)
]

, where the BT
j are

the blending function of the original T-spline. This equivalence allows us to group

terms according to new blending functions and compute new weight and control

point positions (as is done in lines 16-19). Since neither the refinement operation nor

our algebraic manipulations alter the blending functions, the new surface must be

equivalent to the original.

�

We conclude with two observations. First, the denominator of the surface

equation does not change during the execution of the local refinement algorithm—

this property is important for the next section. Second, although the proof of Theo-

rem 4.1 depends on the full refinement of the T-grid, this refinement is rarely realized

58

www.manaraa.com

in practice; most refinement operations remain local to the region in which the mesh

modifications occur. Practical experience shows that in most cases the local refine-

ment algorithm lives up to its title: it remains local.

4.2 T-Spline Simplification using Iterative Refinement

With a procedure for T-spline local refinement, we now develop the iterative refine-

ment method for simplification. Algorithm 4.1 computes the control points of the

refined mesh as linear functions of the initial control points:

Qj =
∑

i

wi
jQ̃i, (4.5)

where Qj are the control points of the refined mesh, wi
j are the weights computed

during local refinement and Q̃i are the control points of the original mesh. Converting

(4.5) to matrix-vector notation, we produce this system of equations:

Q = MQ̃

where the matrix M computes the refinement of the original T-spline (denoted Ti) to

the refined T-spline (denoted Tj).

In the terminology of Section 2.3, M is a T-spline refinement matrix and could

be denoted Mj←i and may be used in the linear least-squares fitting of Ti to Tj: First,

run the local refinement algorithm on Ti to convert it to Tj. Second, use the scale

values collected during local refinement to construct Mj←i. Finally, apply the linear

least-squares fitting of Section 2.3 to compute the fit.

We now develop a framework for T-spline simplification. Suppose we have

a NURBS mesh as depicted topologically in Figure 4.10(a). From this NURBS,

59

www.manaraa.com

(a) A complex unsimplified NURBS surface. (b) The topology of a single Bézier surface.

Figure 4.10: A complex NURBS topology and a single Bézier used to initially ap-
proximate it.

we wish to produce a simplified T-spline that approximates the NURBS to some

tolerance, ε. We start with an extremely simplified approximation of the surface—

like a single Bézier patch, whose mesh topology is shown in Figure 4.10(b). Then, the

approximation is iteratively refined until the desired tolerance is met. Generalizing

this process to simplify any T-spline, we produce Algorithm 4.2.

Algorithm 4.2 T-Spline Simplification : Iterative Refinement

Inputs: A T-spline T with control points, weights and edges. A tolerance value, ε,
at which to generate the simplified T-spline.

Output: A simplified T-spline T ′ that is perturbed from T no more than ε.
1: T ′ ⇐ OverSimplify(T)
2: ε′ ⇐ LeastSquaresFit(T ′,T)
3: while ε < ε′ do

4: for all Fi ∈ T ′ do

5: if GetError(Fi) > ε then

6: Subdivide(Fi)
7: end if

8: end for

9: ε′ ⇐ LeastSquaresFit(T ′, T)
10: end while

60

www.manaraa.com

Details of Algorithm 4.2

Line 1 Store an over-simplified T-spline as the first approximation of the input T-

spline. OverSimplify defines a T-spline over the domain of the input T-spline,

but with all interior knots removed. While OverSimplify is straightforward

for T-splines with rectangular domains, this procedure is complex for arbitrary

topologies. The potential complexity of this procedure is one of the major

motivations for developing alternative T-spline simplification methods.

Line 2 LeastSquaresFit performs the least-squares fit of T ′ to T and returns

the error between the two. The least-squares fit is calculated via linear least-

squares as described in Section 2.3, where the T-spline refinement matrix is

computed from local refinement of T ′ to T . The error metric is the `2 norm of

the difference between T ′ and T . For efficiency, a discrete `2 norm is calculated

on the difference between the control points of the approximation and those

of the original. This is accomplished by locally refining the approximation to

the same space as the original—in building a simplification of an input NURBS

surface, for example, this means converting the approximation losslessly to a

NURBS and then finding the maximum difference between the NURBS control

points of the refined approximation and of the original. The maximum of the

control point differences is an upper bound on the maximum difference between

the surfaces [27].

Lines 3–10 Loops until the fit of the approximation, ε′, falls below the input toler-

ance, ε.

Lines 4–8 Iterates over each of the faces of the approximation, evaluating the error

within the face.

Lines 5–7 Compares the error within face Fi to the input tolerance ε.

61

www.manaraa.com

F 1

(a) During the refinement step, the error
of the surface in the parameter range of F1

exceeds the tolerance.

F RF L

(b) F1 is split along the center-most knot of
the longer dimension of its range. In this
(the even) case one of the two possible can-
didates is selected.

Figure 4.11: Splitting an above-tolerance face during iterative refinement.

Line 6 Performs local refinement of Fi. From experiment, the most effective method

for refining a face is to split it in half, dividing along the parameter direction

with the most knots. For example, the face labeled F1 in Figure 4.11(a) con-

tains 4 original knot lines in the s direction and 2 original knot lines in the

t direction. Therefore, we split the face along one of the central knots of the

face’s s direction, as in Figure 4.11(b). Figure 4.12 contains some additional

examples of this procedure.

Line 9 Repeats the fitting step on the refined approximation in preparation for the

next iteration.

4.2.1 Analysis

The results of applying the iterative refinement method are presented in Chapter 6

and an analysis and comparison with other methods are given there. Even without

considering these results, we can analyze some shortcomings of this method. For one,

the procedure requires the generation of an over-simplified mesh. For meshes with

62

www.manaraa.com

Figure 4.12: Splitting offending faces. The three highlighted faces in (a) have un-
acceptable tolerances measured at D1, D2 and D3. The faces are split as shown in
(b).

w=5

w=2

w=8

Figure 4.13: A weighted NURBS that is difficult to approximate. Each of the un-
labeled control points has a weight of 1, with other weights as labeled. A linear
least-squares approximation of this NURBS surface with a single Bézier cannot be
performed, because the denominator of the Bézier surface cannot possibly equal that
of this surface.

63

www.manaraa.com

simple topologies this task is easily done, but a mesh with many extraordinary points

may be difficult to over-simplify, which limits the applicability of the method.

In addition, the linear least-squares fit requires that the approximation have

the same denominator as the more complex original input. This condition makes

the initial approximation problem even more difficult. For example, Figure 4.13

diagrams a NURBS surface with a few weights varying from the others. In order to

fulfill the condition on the denominator of the surface expression, the weights of the

initial approximation need to match that of the NURBS. A single Bézier patch will

not fulfill this condition in general. This illustrates that even a topologically simple

problem may not be solved correctly with this process.

A final weakness of the iterative refinement method is that it must be applied

globally to the mesh. That is, one may not be selective about which control points may

or may not be removed. This weakness makes it difficult to direct the simplification—

essentially, the only parameter available to the user is the tolerance value for the global

fit. A user may want to preserve small perturbations in one section of the model,

while allowing greater adjustment in another portion. The primary motivation for

the iterative simplification method developed in the next chapter is to address the

specific weaknesses of this method.

64

www.manaraa.com

Chapter 5

T-Spline Simplification using Iterative Simplification

The iterative refinement method of the previous chapter is well-suited for spe-

cific T-spline simplification problems, but it lacks the following capabilities:

• Independence from mesh topology. Iterative refinement method requires the

generation of an oversimplified model; the new method should not.

• Simplification of rational surfaces.

• Regional/user-specified simplification. The control points that may be removed

should be an input into the system.

These deficiencies are addressed in the iterative T-spline simplification method, which

we now present.

Building on the local refinement algorithm, a modification was presented

in [36], permitting the removal of a single specified control point in a T-mesh. [36]’s

algorithm allows only exact removal of the selected control point, which is not always

possible. In spite of its restrictions, the control point removal algorithm is a useful

tool, and we adapt it slightly to produce surface approximating control point removals

that are the basis for iterative simplification.

Section 5.1 reviews in detail the control point removal method of [36]. Sec-

tion 5.2 then adapts control point removal and combines it with least-squares fitting

to produce a general framework for iterative simplification and uses that framework

to produce a specific simplification method.

65

www.manaraa.com

Pk
P1 P2

P3P0
2 2

22

1 1

(a) Before removing a control point from a
NURBS curve. Pk may be removed from
the curve without altering it.

P1 P2

P3P0
2 2

22

2

~

~ ~

~

(b) After removing a control point from a
NURBS curve. Pk in Figure 5.1(a) is re-
moved from the curve and the new control
points are computed as in (5.2). The curve
remains the same over the operation.

5.1 Control Point Removal

Section 4.1.1 shows that a new control point can be added to a NURBS curve without

changing the curve. In certain cases, a control point may be removed without changing

the curve (the neighboring control points must be moved). We now explain this

process.

Pk may be removed exactly from the curve in Figure 5.1(a) only if the control

point configuration can be arrived at by inserting Pk back into the simplified control

polygon. The equations for its insertion are

P0 = P̃0

P1 = 1
6
P̃0 + 5

6
P̃1

Pk = 1
2
P̃1 + 1

2
P̃2

P2 = 5
6
P̃2 + 1

6
P̃3

P3 = P̃3,

(5.1)

66

www.manaraa.com

where the P̃i are the control points of the curve before the insertion of Pk and the

Pi are the control points after the insertion. This implies

P̃0 = P0

P̃1 = 6P1 − 5P0

P̃2 = 6P2 − 5P3

P̃3 = P3.

(5.2)

Since the removal is exact, the position of Pk is not needed in (5.2)1 and

the equations compute the modified control polygon without altering the curve (see

Figure 5.1(b)). This technique may be generalized to NURBS curves of any degree.

5.1.1 Reverse Blending Function Transformations

We now consider how to undo the effect of a control point insertion in a T-spline.

The control point removal method in [36] stems from a modification of the equation

for blending function refinement (2.5), which we restate here:

Bi(u) = c1Bi1(u) + c2Bi2(u).

This equation is typically used to express a refinement operation—Bi(u) is refined

into the sum of two scaled blending functions.

Observe that one of the resulting smaller blending functions always retains the

center knot of the original, while the other blending function has a different one at

its center. For our discussion, we assume that Bi1 retains Bi’s central knot, while Bi2

does not. We now write

Bi1(u) =
1

c1
Bi(u) −

c2

c1
Bi2(u). (5.3)

1Incidentally, for this example the exactness condition is: Pk = 1
2 P̃1 + 1

2 P̃2.

67

www.manaraa.com

=

+

Figure 5.1: A graphical representation of the reverse blending function transforma-
tion. The gray vertical lines represent knot values.

Since c1, c2 ∈ (0, 1], we can interpret this as transforming Bi1 into the sum of a

blending function that is missing one of Bi1 ’s knots and a negative blending function

that contains the missing knot and whose central knot differs from Bi1 . Figure 5.1

illustrates this interpretation of the operation graphically. [36] calls this operation a

reverse blending function transformation.

To simplify (5.3) further, we rewrite the fractional coefficients as a1 and a2,

respectively:

Bi1(u) = a1Bi(u) + a2Bi2(u). (5.4)

Using this notation, we modify Table 2.1 to produce Table 5.1. This table identi-

fies the coefficients and intervals for Bi and Bi2 , given Bi1 has the knot intervals

(d0, d1, d2, d3) with neighboring intervals d−1 and d4 as depicted in Figure 5.2. The

contents of Table 5.1 refer to the knot interval and value labels of Figure 5.2:

68

www.manaraa.com

d-1
t0 t1 t2 t3 t4 t5 t6

d0

d1 d2
d3 d4

Figure 5.2: A labeled blending function before a reverse transform. where the di

represent the knot intervals and the ti (associated with control points) represent the
parameter positions of the control points. Depending on the transform, different pairs
of neighboring intervals may be joined over as specified in Table 5.1.

Joined
Intervals

a1 value a2 value
Blending Function Intervals

and Central Knots

d−1, d0 1 − d
−1

d
−1+d0+d1+d2

Bi : (d−1 + d0, d1, d2, d3) at t3
Bi2 : (d−1, d0, d1, d2) at t2

d0, d1
d0+d1+d2+d3

d1+d2+d3
−a1 ·

(d0+d
−1)

(d
−1+d0+d1+d2)

Bi : (d−1, d0 + d1, d2, d3) at t3
Bi2 : (d−1, d0, d1, d2) at t2

d2, d3
d0+d1+d2+d3

d0+d1+d2
−a1 ·

d2+d3

d1+d2+d3+d4

Bi : (d0, d1, d2 + d3, d4) at t3
Bi2 : (d1, d2, d3, d4) at t4

d3, d4 1 − d4

d1+d2+d3+d4

Bi : (d0, d1, d2, d3 + d4) at t3
Bi2 : (d1, d2, d3, d4) at t4

Table 5.1: Ordinate Values Resulting from a Reverse Blending Function Transforma-
tion

Similar to applying blending function refinement to control point insertion, we

now apply the reverse blending function transformation to control point removal. We

follow the same high-level process formulated in developing control point insertion

(see Section 4.1.1): decouple the blending functions from the control polygon, modify

it, and then resolve the blending functions to the control polygon. This time, the

reverse blending function transformation may be used in the resolution process.

69

www.manaraa.com

2 2

22

2

B[*,2,2,1]0

B[2,2,1,1]1

B[2,1,1,2]k

B[1,2,2,*]3

B[1,1,2,2]2

Figure 5.3: Modified control polygon of a curve with decoupled blending functions.
Note that Pk and its blending function are still tracked, even though Pk is no longer
part of the control polygon. Also, each blending function retains the knot intervals
from before the modification as specified in their subscripts.

An example of the process will illustrate how this applies to control point

removal. Figure 5.1(a) will serve as an example. In the first step, the blending

functions decouple from the control polygon, so that they retain their local knot

intervals even if the control polygon topology is modified. Then, we remove point Pk,

which produces the control polygon in Figure 5.3. Note that Figure 5.3 is annotated

with the decoupled blending functions from the first step and that the control point

geometries have not yet been modified.

In the resolution step, we examine the blending functions and we note that

B0’s local knot vector is more refined than that implied by the control polygon. In

addition, the knot location at which B0 is more refined corresponds to the control

point that we removed (the former Pk). Two courses of action are possible:

1. Refinement of the control polygon to match B0’s knot intervals.

2. A reverse blending function transform on B0 in an attempt to eliminate the

offending knot.

Since the offending knot is not wanted (it was expressly removed), the second choice

is the only option at this point.

70

www.manaraa.com

B[*,2,2,2]0

B[2,2,1,1]1

B[2,1,1,2]k

B[1,1,2,2]2

B[1,2,2,*]3

B[2,2,1,1]01
6

2 2

22

2

Figure 5.4: Control polygon after a single reverse blending function transform on
B0

[∗,2,2,1]. Note that portions of B0
[∗,2,2,1] are shown in red text and now reside at the

two left-most control points.

Examining Table 5.1 we see that the last row of the table applies in this case:

B0 is replaced with two other blending functions, one of which does not contain the

undesired knot and which is centered on the same knot value/control point as B0. The

other blending function’s central knot is elsewhere (specifically, the knot associated

with P1) and has a negative coefficient. The resulting blending function configuration

is shown in Figure 5.4.

Processing of the remaining blending functions then follows and the remaining

steps are shown graphically in Figure 5.5. The end effect of this process produces an

interesting result: a set of blending functions with negative coefficients have central

knots and knot vectors equivalent to those of Bk and the sum of the “negative”

blending functions adds up to eliminate Bk altogether! With Bk eliminated, all of

the remaining blending functions correspond exactly to the modified control polygon

and produces control point positions2 that match exactly (5.2). Thus, the process

outlined here produces the same result as computed earlier by hand.

Recall that the blending function eliminated through the process (Bk in this

example) corresponds to the control point that was eliminated in the mesh. [36] calls

2The control point positions are determined using the process described in Section 4.1.1.

71

www.manaraa.com

B[*,2,2,2]0

B[2,2,1,1]1

B[2,1,1,2]k

B[1,1,2,2]2

B[1,2,2,*]3

B[2,2,2,2]01
5

B[2,1,1,2]01
10

2 2

22

2

(a) A reverse transform is performed on
B0

[2,2,1,1] (using row 3 of Table 5.1), producing

B0
[2,1,1,2] and B0

[2,2,2,2].

B[*,2,2,2]0

B[2,1,1,2]k

B[1,1,2,2]2

B[1,2,2,*]3

B[2,2,2,2]01
5

B[2,1,1,2]01
10

2 2

22

2

B[2,1,1,2]13
5

B[2,2,2,2]16
5

(b) A similar transform is then performed
on B1

[2,2,1,1].

B[*,2,2,2]0

B[2,1,1,2]k

B[2,2,2,*]3

B[2,2,2,2]01
5

B[2,1,1,2]01
10

2 2

22

2

B[2,1,1,2]13
5

B[2,1,1,2]31
10

B[2,1,1,2]23
5

B[2,2,2,2]16
5

B[2,2,2,2]31
5

B[2,2,2,2]26
5

(c) By symmetry, additional blending functions are
generated. Note that the sum of the coefficients
of blending functions centered on Pk is equal to
zero—this eliminates Bk

[2, 1, 1, 2].

Figure 5.5: Completing the control point removal process.

72

www.manaraa.com

this blending function the residue and identifies the goal of T-spline control point

removal to eliminate the residue.

Algorithm 5.1 T-Spline Local Simplification

Inputs: A T-spline T with control points Pi, weights wi and blending functions Bi.
A single control point removal operation R that removes Pk from T .

Output: Returns False if the control point may not be removed.
Otherwise, returns True and the T-spline T (now T ′) includes the removal R

and is equivalent to the input.
1: P̃ ⇐ {Pi}
2: B ⇐ {(wi, B

T
i)}

3: Apply R to T—remove Pk. Store residue in (Pk, Bk) centered at (sk, tk).
4: repeat

5: for all (wi
j, B

i
j) ∈ B do

6: if Bi
j ≡ Bk then

7: Pk ⇐ Pk + wi
j · Pi

8: else if Bi
j contains but is not centered at (sk, tk) then

9: do reverse transform: wi
jB

i
j = wi

j(a1B̃
i
j + a2B̃

i
k)

10: B ⇐ B − (wi
j, B

i
j)

11: B ⇐ B
⋃

{

(wi
j · a2, B̃

i
k), (w

i
j · a1, B̃

i
j)

}

12: else if BT
j is more refined than Bi

j then

13: add a knot from BT
i to Bi

j using refinement: wi
jB

i
j = wi

j(c1B̃
i
j + c2B̃

i
k)

14: B ⇐ B − (wi
j, B

i
j)

15: B ⇐ B
⋃

{

(wi
j · c2, B̃

i
k), (w

i
j · c1, B̃

i
j)

}

16: else if Bi has a knot other than (sk, tk) that is not in BT
i then

17: insert a vertex at Bi
j’s knot value into the T-grid

18: end if

19: end for

20: until neither T-grid nor blending functions change in an iteration
21: if (Pk, Bk) ≡ (0, Bk) then

22: for all Pj do

23: Pj ⇐
∑

i w
i
jP̃i where wi

j ∈ (wi
j, B

i
j) ∈ B and P̃i ∈ P̃

24: wj ⇐
∑

i w
i
j where wi

j ∈ (wi
j, B

i
j) ∈ B

25: end for

26: return True
27: else

28: Undo the modification of T ’s T-grid.
29: return False
30: end if

73

www.manaraa.com

5.1.2 T-Spline Control Point Removal

Given the reverse blending function transformation and the goal to eliminate the

residual blending function, [36] incorporates them into the local refinement algorithm

to produce a local simplification/control point removal algorithm. This algorithm

allows the user to specify a single control point to be removed in a T-spline and then

either removes the control point successfully or reports that the control point may

not be removed. The algorithm is summarized in Algorithm 5.1 and then examined

in detail below.

Details of Algorithm 5.1

Algorithm 5.1 is essentially the local refinement algorithm with a few minor enhance-

ments, so this sub-section focuses on the differences between the two methods and

refers back to Algorithm 4.1 for the similarities.

Lines 1–2 See Algorithm 4.1, lines 1–2.

Line 3 Modifies the mesh by eliminating Pk. Note that this may modify the mesh

by either joining two parallel edges over Pk or by removing Pk altogether. The

latter only occurs when Pk does not have a pair of parallel edges passing through

it—e.g., Pk is an L or I junction.

Lines 4–20 The main resolution loop. This loop differs slightly from that of Algo-

rithm 4.1, because this algorithm may not terminate in successful removal—we

simply perform as many operations as possible and then see if an acceptable

result is produced.

Lines 5–19 Loops over all of the decoupled blending functions, looking for discrep-

ancies between mesh and blending functions.

Lines 6–7 If the current blending function (Bi
j) matches that of the residue, then

add Bi
j’s scaled geometry (wi

j · Pk) to the residue’s. Note that we perform the

74

www.manaraa.com

comparison on the blending functions and perform the update on the geometry.

Note also that we use geometry here to indicate both the Cartesian coordinate

and the weight.

Lines 8–11 If the current blending function has the offending knot (the one we

are trying to remove), then do a reverse blending function transformation to

(hopefully) lead to its removal. Lines 10 and 11 replace the current blending

function with the result of the reverse transformation.

Lines 12–15 See Algorithm 4.1, lines 6–10.

Lines 16–18 These lines are similar to lines 11–13 of Algorithm 4.1, but with one

significant difference: The conditional (line 16) prevents refinement along the

removed knot. This prevents Pk from being added to the mesh again.

Lines 21–26 After the main loop has terminated, we check the residue: if it has

been eliminated (its geometries are zero), the procedure has succeeded, the new

control point positions may be computed and success may be returned to the

calling program.

Lines 22–25 See Algorithm 4.1, lines 16–19.

Lines 28–20 Since the residue has not been eliminated, the procedure has failed to

produce a set of blending functions that correspond to the T-grid (the residue

blending function is non-zero and is located where no control point resides).

Therefore, we reverse the mesh operations3 on T and return false, stating that

Pk could not be removed as requested.

[36] provides a proof that Algorithm 5.1 will terminate.

3This may be done either by recording the mesh operations performed on T in an undo stack or
by saving an original copy of T .

75

www.manaraa.com

5.2 Iterative Simplification

Local T-spline simplification applies only to the exact removal case, limiting its use-

fulness. In order to fulfill the general requirements of T-spline simplification identified

at the beginning of this chapter, some modifications are necessary.

In our discussion of T-spline spaces in Section 2.3, we determined that a linear

least-squares fit could only be used to fit one T-spline to another if the denominator of

the surface polynomials were equal. In the nomenclature of Section 2.3, T-splines de-

fined over the same parameter domain and with equivalent denominators are elements

of the same nested sequence of weighted T-spline spaces.

Viewing T-spline local simplification from the perspective of the weighted T-

spline space, we observe the effect of applying the method to only the weights of

T : Algorithm 5.1 computes T ′ ∈ Sw
1 from T ∈ Sw

2 , where Sw
1 ⊂ Sw

2 . Once T ′

has been computed, it may then be fit to T (or to any other T-spline that is a

superset of Sw
1) using linear least-squares. Thus, with only a slight modification we

can use Algorithm 5.1 in a T-spline simplification algorithm that fits the desired

requirements—we need only replace (Pk, Bk) in the algorithm with (wk, Bk), such

that only the weights of the control points are processed.

The modified control point removal algorithm (where weights replace geome-

tries) produces a T-spline that belongs to a subspace of the original. Thus, we may fit

the geometric positions of the control points in the simplified T-spline to those of the

original and compute the error of approximations using the methods in Chapter 4.

Essentially, this modification of the T-spline local simplification algorithm permits us

to compute approximate simplifications that represent best-fits (in the least-squares

sense) to original T-splines.

76

www.manaraa.com

5.2.1 A Framework for Iterative Simplification

With the tool of lossy T-spline control point removal in hand we now develop a

framework that meets our desired requirements for simplifying a T-spline to a given

tolerance, ε, on a given set of vertices, R. The framework is summarized in Algo-

rithm 5.2 and explored in detail below. We will use this framework as an outline for

the iterative simplification algorithm presented in the Section 5.2.2.

Algorithm 5.2 T-Spline Simplification : Iterative Simplification Framework

Inputs: A T-spline T with control points Pi, weights wi and blending functions Bi.
A set of candidate control points, R, for removal.
A tolerance value, ε, for the simplification.

Output: A T-spline T̃ simplified to the tolerance ε, from which only Pi ∈ R have
been removed.

1: T̃ ⇐ T

2: R ⇐ GetBestRemoval(T̃ ,R)
3: while GetError(R, T̃ , T) < ε do

4: PerformRemoval(T̃ ,R)
5: R ⇐ R− R

6: LeastSquaresFit(T̃ , T)
7: R ⇐ GetBestRemoval(T̃ ,R)
8: end while

9: return T̃

Details of Algorithm 5.2

Line 1 Saves a copy of the input T-spline (which will not be modified) into a working

copy, T̃ , from which control points will be removed. T̃ will always be fit to T .

Line 2 Stores locally the “best” removal candidate. The GetBestRemoval func-

tion should select a candidate control point R ∈ R. Since the search space of

the candidates may potentially be very large, GetBestRemoval can employ

any number of heuristics for evaluating candidate control points. Note that

since valence four control points may be removed in either parameter direction,

R may need to be coupled with a removal direction (depending on GetBe-

stRemoval).

77

www.manaraa.com

Lines 3–8 The main loop. The core idea is to remove and fit until no more within-

tolerance removals may be performed. This loop ensures that the error produced

by removing R from T̃ and then fitting T̃ to T is below the user-specified toler-

ance. For efficiency, the fitting error might be returned by GetBestRemoval

along with R.

Line 4 Removes R and possibly other related control points from T̃ (depending on

the removal heuristic).

Line 5 Removes R (and any others removed by PerformRemoval) from the set

of candidates, R.

Line 6 Fits T̃ to T , by refining T̃ to the space of T or to a common superspace.

This fit is performed exactly as described for the iterative refinement algorithm

(see Section 4.2). Essentially, a refinement matrix from T̃ to T is generated and

then used to perform the least-squares fitting.

Line 7 Collects the next best removal candidate as in line 2.

Line 9 Returns the simplified T-spline, T̃ , to the user.

5.2.2 Applying Algorithm 5.2

The abstract framework for iterative simplification involves the two heuristic func-

tions: GetBestRemoval and PerformRemoval. In this section, we develop

removal strategies for these functions. The solution developed here does not produce

the result with the absolute fewest control points that falls below the tolerance—

many models may have several thousand control points, making an exhaustive search

of the space intractable. However, the solution produces reasonable results that are

comparable to those produced by the iterative refinement method—and, it works on

rational surfaces and arbitrary topology meshes.

78

www.manaraa.com

In considering heuristics for selecting the best candidate for removal from a

T-spline, we focus on two specific desirable properties of a simplified mesh. First,

removing the candidate should produce a T-spline that fits the original as well as

possible—if the selected removal candidate exceeds the tolerance then the main loop

of our framework will cause the simplification to terminate. Second, candidates should

be removed to promote the expansion of faces in the mesh—large and uniform faces

(where possible) give the mesh a structure that is more intuitive to human users.

To meet these goals, we propose the following general principles:

• Each candidate’s removal should be evaluated by measuring the fitting error

of performing the removal. The removal that produces the best fit should be

promoted.

• Since control points may be added in the T-spline local simplification algo-

rithm4, removing the candidate should decrease the number of control points

in the mesh.

• Removal should avoid bias toward a specific parameter—faces open up in the

mesh when a removal in the s parameter is followed by one in the t parameter.

Removals that repeatedly expand a single edge should be avoided, since this will

produce blending functions that have a lot of influence in one parameter, but

comparatively little in the other. For example, Figure 5.6 illustrates a T-grid

from which several control points along a single parameter direction have been

removed. This pattern does not promote the expansion of faces in the mesh

and tends to generate meshes that are non-intuitive for modelers.

• Several consecutive removals along a row in the parameter direction opposite

the row should be encouraged. This promotes a uniformity in removals that

is similar to knot removal methods for NURBS surfaces [25], which necessarily

4Algorithm 5.1 only guarantees that the specified point will be removed (if possible), not that
other control points will not be created.

79

www.manaraa.com

s

t

Figure 5.6: Thin faces created removing the grey control points in the s parameter di-
rection. The long edges and faces tend to generate blending functions whose influence
is large in one parameter direction, but small in the other.

s

t

Figure 5.7: Faces created by several removals in the t parameter direction. By remov-
ing the gray control points along a line that is perpendicular to the direction of the
removal, subsequent removals in the s parameter direction tend to open up square
faces.

80

www.manaraa.com

remove an entire row or column of control points at once. This principle is

illustrated in Figure 5.7.

Combining these principles into an iterative simplification solution, we present

processes for the GetBestRemoval and PerformRemoval functions in Algo-

rithm 5.2:

GetBestRemoval: This function iterates over the list of candidate vertices,

R, and selects the vertex with the lowest perturbation error and which does

not increase the number of control points in the mesh. In addition, each time

this function is called the parameter direction of the removal for each vertex

switches. For valence four vertices, the vertex may be removed in one of two

directions s or t as illustrated in Figure 5.8. Each call to GetBestRemoval

checks only one of the possible directions in determining perturbation error.

On the first iteration the direction is arbitrary, but on each subsequent call to

GetBestRemoval, the removal direction toggles to the opposite parameter.

Switching between the two parameters balances the removals evenly between

the two. If a control point may not be removed in the parameter direction of

the current call to GetBestRemoval, its removal is ignored until the next

iteration.

PerformRemoval: When the removal of the input vertex, R, is specified, we use R

as an initial position for removing a row of control points. We begin the removal

at R and proceed away from it in the directions opposite of R’s removal. For

example, Figure 5.9 shows the removal of R in the s parameter direction with

arrows in the positive and negative t directions from R. Additional removals in

s are performed in each of these directions until removals either exceed tolerance

or are no longer possible in that direction.

81

www.manaraa.com

s

t

(a)

s

t

(b)

Figure 5.8: The two removal possibilities for a valence four control point. (a) il-
lustrates the removal of the gray control point (and its edges) in the s parameter
direction. (b) illustrates the removal of the same point in the t parameter direction.

s

t

R

Figure 5.9: The expansion of removals in the parameter direction opposite that of
the removal. The removal of R is performed in the s direction and then removals are
attempted along the t direction as long as they are permitted and do not perturb the
surface above tolerance.

82

www.manaraa.com

An implementation of this iterative simplification solution was used to produce

the results presented in Chapter 6, which compares them with the results from the

iterative refinement method of Chapter 4.

83

www.manaraa.com

84

www.manaraa.com

Chapter 6

Results

This chapter gives the results of applying the methods of this thesis to profes-

sionally produced NURBS models. After each presentation, we briefly compare and

analyze the two methods, their strengths and weaknesses.

6.1 Iterative Refinement

The results of applying Algorithm 4.2 to several professionally-produced, commercial-

quality models are presented in Figures 6.1–6.4. The models in Figures 6.2–6.4 were

carefully constructed by professional modelers, who exercised care to avoid the addi-

tion of unnecessary control points. In spite of this the iterative refinement algorithm

produces approximations with around half of the control points of the initial models

with very little perturbation. The model in Figure 6.1 was not as carefully constructed

and the simplification method was thus able to eliminate a higher percentage of con-

trol points. Each simplification was performed with a tolerance of 1.5%.

One strength of the iterative refinement method, is the uniform structure of

the T-spline approximations generated. This structure emerges from the refinement of

faces in the process—the face subdivision produces a pattern of increasing refinement

in the mesh, which resembles the uniform construction of the original models. This

emergent behavior of the algorithm is to generate meshes that home in on the high

error regions, while maintaining a meaningful structure in the model’s control mesh.

85

www.manaraa.com

Figure 6.1: Iterative Refinement : model of a human head. The NURBS model (a)
has 4,712 control points, which the iterative refinement method reduces to a T-spline
with 1,109 control points. To accentuate the control point reduction, the superfluous
control points are highlighted in red on the NURBS model. To emphasize that the
right model is a T-spline, T-junctions are highlighted in purple.

Figure 6.2: Iterative Refinement : Model of a Frog. T-junctions in the T-spline are
shown as red control points in this simplification and in the next two models as well.
(Courtesy Zygote Media Group)

86

www.manaraa.com

(a) Triceratops model. (b) NURBS with 15,588 control points.

(c) Simplified T-spline with 8,432 control
points.

Figure 6.3: Iterative Refinement : Model of a Triceratops. (Courtesy Zygote Media
Group)

Figure 6.4: Iterative Refinement : Model of a Woman. (Courtesy Zygote Media
Group)

87

www.manaraa.com

Figure 6.5: Iterative Refinement : Comparison with Wavelet Decomposition. A
wavelet decomposition of the original model is “flattened” to a T-spline is shown in
(a) and has 1,926 control points. The model generated using the Iterative Refinement
method is shown in (b) with 1,109 control points. The additional control points
are shown in red on the left, emphasizing the extra control points produced when
flattening a wavelet decomposition hierarchy.

88

www.manaraa.com

The “flattened hierarchy” appearance of the meshes produced by iterative

refinement invites a comparison with hierarchical methods. In Figure 6.5 we compare

the head model produced by iterative refinement to a B-spline wavelet decomposition

represented as a T-spline. To generate the comparison model, we performed B-spline

wavelet decomposition, thresholded the small coefficients, and then used T-spline

local refinement to construct a T-spline from the remaining non-zero coefficients.

The T-spline created using B-spline wavelet decomposition has approximately 74%

more control points than that generated from the iterative refinement method using

the same tolerance for each method. This difference between the two methods may

likely be attributed to the additional control points that are created during the local

refinement process.

6.2 Iterative Simplification

Results of the iterative simplification method developed in Chapter 5 are shown in

Figures 6.7–6.9. Using the metric of control point count, similar results were attained

with this method than with iterative refinement.

(a) Iterative Simplification solution with
3,975 control points.

(b) Iterative Refinement solution with 5,035
control points.

Figure 6.6: Model of a Frog. T-junctions in the T-spline are red.

89

www.manaraa.com

Figure 6.7: Iterative Simplification : model of a human head. Figures (a) and (b) have
1,208 and 1,109 control points, respectively. With T-junctions highlighted in purple,
the control polygons illustrate the differences between the two methods. While both
identify regions requiring a high-density of control points, iterative refinement homes
in on the regions in a very structured manner. See also the topology comparison in
Figure 6.10.

Figure 6.8: Iterative Simplification : Model of a Triceratops. This model has 6,389
control points compared to 8,432 control points in the model simplified to the same
tolerance using the Iterative Refinement (see Figure 6.3(c)). T-junctions are red.

90

www.manaraa.com

Figure 6.9: Iterative Simplification : Model of a Woman with 3,134 control points
(compared to 3,955 using the iterative refinement method).

6.3 Comparison and Analysis

We now compare the quality of our results and the two T-spline simplification methods

developed in this thesis. Figure 6.10 compares the simplified topologies of the human

head model depicted in 6.1. We note that the iterative refinement method produces

a more uniform pattern in its simplification. While both topologies do generate large

open regions of the mesh, as evidenced in the figure, in this comparison and for this

model, the iterative refinement method exhibits an apparent advantage.

Another dimension for our comparison is to look at the limitations and advan-

tages of the two methods. Some limitations of the iterative refinement method have

already been mentioned at the end of Chapter 4. We summarize the comparison in

Table 6.1.

91

www.manaraa.com

Properties
Iterative

Refinement

Iterative

Simplification

Global Simplification Yes Yes

Selective Simplification (select control points) No Yes

Produces Uniform Mesh Yes Somewhat

Arbitrary Topology Non-trivial Yes

Rational Surfaces Not generally Yes

Fitting within a Tolerance Yes Yes

Table 6.1: Comparison of the Properties of the Iterative Refinement and Iterative
Simplification Methods

As evident from this table, the iterative simplification method exhibits several

clear advantages over iterative refinement. For one, the freedom to operate selectively

on arbitrary topology T-splines is of particular note, because it significantly reduces

the restrictions placed on iterative refinement. In addition, the selective simplification

makes user-guided simplification possible: a user could select a simplification tool and

use it to click-and-drag over regions of a mesh to simplify interactively. As the user

drags the tool over the mesh, tolerance values may be altered for each control point in

the iterative simplification algorithm. This user interface would have the net effect of

locally and interactively smoothing the input surface. This flexibility of user-interface

design is not an option with iterative refinement, due to its global approach.

Finally, iterative simplification also provides a supporting framework for ad-

ditional research. By isolating the control point selection and removal heuristics,

additional research can produce improved methods for determining where and when

to remove control points. This framework facilitates the development of heuristics

that produce results equivalent those of the iterative refinement method, but having

all of the significant benefits of iterative simplification.

92

www.manaraa.com

(a) Topology of the head model simplified using iterative refinement.

(b) Topology of the same model simplified using iterative simplification.

Figure 6.10: Simplification method topology comparison.

93

www.manaraa.com

94

www.manaraa.com

Chapter 7

Conclusions and Future Work

This thesis has presented two algorithms for simplifying T-spline surfaces,

which are a generalization of the NURBS and Catmull-Clark subdivision surfaces in

prevalent use today. The core contribution of the thesis has been the development of

methods that organize fundamental operations on T-splines, such as local refinement

and control point removal, to produce a simplified solution.

Although the algorithms presented are not optimal with respect to control

point count, they do produce control meshes that mimic those produced by human

modelers (as evidenced by the large face regions in the meshes) and which exhibit a

noticeable correspondence between feature and control point density. The ultimate

goal is to find a happy medium between maximal data reduction and useability. The

results produced here mark a step closer to achieving the goal.

One important restriction on the methods developed here is the condition nec-

essary for fitting. Future research that incorporates or develops an efficient non-linear

least-squares method for fitting could open the door to many new possibilities. It is

important to be aware that the linear-fit requirement of the methods of this thesis

make necessary the use of T-spline local refinement and control point removal algo-

rithms, which preserve the denominator polynomials of the surface operated on. Were

non-linear methods applied to this problem, the topological restrictions on the simpli-

fication could be greatly reduced and new methods for computing the simplification

could be explored.

95

www.manaraa.com

Finally, T-splines are relatively new, and this work is the first to delve into

this subject. While superficially related to work on NURBS surfaces, the difficulties

introduced by the T-spline’s signature feature (the T-junction) make the T-spline

simplification task much more complicated than simplification of NURBS. In spite of

the difficulties, it is hoped that this work may provide a good foundation for future

fruitful work in improving the quality of 3D surface models through conversion to

and simplification of T-splines.

96

www.manaraa.com

Bibliography

[1] T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and

T. Lyche, “T-spline simplification and local refinement,” ACM Trans. Graph.,

vol. 23, no. 3, pp. 276–283, 2004.

[2] T. W. Sederberg, “Computer aided geometric design.” on-line class notes, Jan-

uary 2006. URL: http://cagd.cs.byu.edu/text/ch1.pdf, page 1.

[3] W. Böhm, G. Farin, and J. Kahmann, “A survey of curve and surface methods

in CAGD,” Comput. Aided Geom. Des., vol. 1, no. 1, pp. 1–60, 1984.

[4] C. de Boor, “On calculating with B-splines,” Journal of Approximation Theory,

vol. 6, pp. 50–62, 1972.

[5] W. Böhm, “Inserting new knots into B-spline curves,” Computer-Aided Design,

vol. 12, pp. 199–201, July 1980.

[6] E. Cohen, T. Lyche, and R. F. Riesenfeld, “Discrete B-splines and subdivision

techniques in computer-aided geometric design and computer graphics,” Com-

puter Graphics and Image Processing, vol. 14, pp. 87–111, 1980.

[7] L. Ramshaw, “Blossoming: A connect-the-dots approach to splines,” Research

Report 19, Digital Systems Research Center, Palo Alto, CA, USA, 1987.

[8] C. de Boor, “Bicubic spline interpolaton,” Journal of Mathematics and Physics,

vol. 41, pp. 212–218, 1962.

[9] G. M. Chaikin, “An algorithm for high speed curve generation,” Computer

Graphics and Image Processing, vol. 3, pp. 346–349, 1974.

[10] E. Catmull and J. Clark, “Recursively generated B-spline surfaces on arbitrary

topological meshes,” Computer-Aided Design, vol. 10, no. 6, pp. 350–355, 1978.

[11] D. Doo and M. Sabin, “Behaviour of recursive division surfaces near extraordi-

nary points,” Computer-Aided Design, vol. 10, no. 6, pp. 356–360, 1978.

97

www.manaraa.com

[12] T. W. Sederberg, J. Zheng, D. Sewell, and M. Sabin, “Non-uniform recursive

subdivision surfaces,” in SIGGRAPH ’98: Proceedings of the 25th annual con-

ference on Computer graphics and interactive techniques, (New York, NY, USA),

pp. 387–394, ACM Press, 1998.

[13] D. R. Forsey and R. H. Bartels, “Hierarchical B-spline refinement,” in SIG-

GRAPH ’88: Proceedings of the 15th annual conference on Computer graphics

and interactive techniques, (New York, NY, USA), pp. 205–212, ACM Press,

1988.

[14] T. W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri, “T-splines and T-

NURCCs,” ACM Trans. Graph., vol. 22, no. 3, pp. 477–484, 2003.

[15] A. Bakenov, “T-splines : tensor product B-spline surfaces with T-junctions,”

Master’s thesis, Brigham Young University, Provo, UT 84602, USA, 2001. ID:

2855005.

[16] M. Dæhlen and T. Lyche, “Decomposition of splines,” in Mathematical meth-

ods in computer aided geometric design II, pp. 135–160, San Diego, CA, USA:

Academic Press Professional, Inc., 1992.

[17] W.-K. Jeong, K. Kähler, and H.-P. Seidel, “Subdivision surface simplification,”

in PG ’02: Proceedings of the 10th Pacific Conference on Computer Graphics and

Applications, (Washington, DC, USA), p. 477, IEEE Computer Society, 2002.

[18] H. Ipson, “T-spline merging,” Master’s thesis, Brigham Young University, Provo,

UT 84602, USA, 2005. ID: 3363860.

[19] G. T. Finnigan, “Arbitrary degree T-splines,” Master’s thesis, Brigham Young

University, Provo, UT 84602, USA, 2007 (in progress).

[20] D. C. Lay, Linear Algebra and its Applications. Reading, Mass.: Addison Wesley,

3rd edition ed., 2000.

[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in C: The Art of Scientific Computing. New York, NY, USA: Cambridge

University Press, 1992.

[22] W. Heidrich, R. Bartels, and G. Labahn, “Fitting uncertain data with NURBS,”

in Curves and Surfaces in Geometric Design (A. L. Mehaute, C. Rabut, and

L. L. Schumaker, eds.), Vanderbilt University Press, 1997.

98

www.manaraa.com

[23] W. Ma and J.-P. Kruth, “Mathematical modeling of free-form curves and surfaces

from discrete points with NURBS,” in Proceedings of the international conference

on Curves and surfaces in geometric design, (Natick, MA, USA), pp. 319–326,

A. K. Peters, Ltd., 1994.

[24] W. Heidrich, “Spline extensions for the maple plot system,” Master’s thesis,

Department of Computer Science, University of Waterloo, 200 University Avenue

West, Waterloo, Ontario, Canada N2L 3G1, 1995.

[25] T. Lyche and K. Morken, “Knot removal for parametric B-spline curves and

surfaces,” Comput. Aided Geom. Des., vol. 4, no. 3, pp. 217–230, 1987.

[26] D. Forsey and D. Wong, “Multiresolution surface reconstruction for hierarchical

B-splines,” in Graphics Interface, pp. 57–64, 1998.

[27] W. Tiller, “Knot-removal algorithms for NURBS curves and surfaces.,”

Computer-Aided Design, vol. 24, pp. 445–453, August 1992.

[28] M. Eck and J. Hadenfeld, “Knot removal for B-spline curves,” Computer Aided

Geometric Design, vol. 12, no. 3, pp. 259–282, 1995.

[29] M. Eck and H. Hoppe, “Automatic reconstruction of B-spline surfaces of ar-

bitrary topological type,” in SIGGRAPH ’96: Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, (New York, NY,

USA), pp. 325–334, ACM Press, 1996.

[30] W. Ma and N. Zhao, “Smooth multiple B-spline surface fitting with catmull–clark

subdivision surfaces for extraordinary corner patches.,” The Visual Computer,

vol. 18, no. 7, pp. 415–436, 2002.

[31] Y. He, K. Wang, H. Wang, X. Gu, and H. Qin, “Manifold T-spline,” in Kim and

Shimada [37], pp. 409–422.

[32] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks,

and W. Wright, “Simplification envelopes,” in SIGGRAPH ’96: Proceedings of

the 23rd annual conference on Computer graphics and interactive techniques,

(New York, NY, USA), pp. 119–128, ACM Press, 1996.

[33] H. Hoppe, “View-dependent refinement of progressive meshes,” in SIGGRAPH

’97: Proceedings of the 24th annual conference on Computer graphics and in-

teractive techniques, (New York, NY, USA), pp. 189–198, ACM Press/Addison-

Wesley Publishing Co., 1997.

99

www.manaraa.com

[34] J. C. Xia and A. Varshney, “Dynamic view-dependent simplification for polygo-

nal models,” in VIS ’96: Proceedings of the 7th conference on Visualization ’96,

(Los Alamitos, CA, USA), pp. 327–ff., IEEE Computer Society Press, 1996.

[35] T. W. Sederberg, J. Zheng, and X. Song, “Knot intervals and multi-degree

splines,” Computer Aided Geometric Design, vol. 20, no. 7, pp. 455–468, 2003.

[36] Y. Wang and J. Zheng, “Control point removal algorithm for T-spline surfaces.,”

in Kim and Shimada [37], pp. 385–396.

[37] M.-S. Kim and K. Shimada, eds., Geometric Modeling and Processing - GMP

2006, 4th International Conference, Pittsburgh, PA, USA, July 26-28, 2006, Pro-

ceedings, vol. 4077 of Lecture Notes in Computer Science, Springer, 2006.

[38] J. Stam, “Exact evaluation of catmull-clark subdivision surfaces at arbitrary

parameter values,” in SIGGRAPH ’98: Proceedings of the 25th annual confer-

ence on Computer graphics and interactive techniques, (New York, NY, USA),

pp. 395–404, ACM Press, 1998.

100

www.manaraa.com

Appendix A

Catmull-Clark Local Refinement

As noted in Chapter 2, some blending functions near extraordinary points are

not tensor product B-splines, but are defined using subdivision rules. In this thesis

we use only the subdivision rules from [12]. In order to compute the surface at regions

near extraordinary points, the subdivision rules must be applied repeatedly until a

desired resolution is achieved. Mathematically, the surface consists of an infinite

sequence of piecewise polynomial patches that converge on the extraordinary point.

In this appendix, we address specifically the question of local refinement of the

blending functions near extraordinary points, which we refer to here as extraordinary

point blending functions or simply extraordinary blending functions. This appendix

describes methods for handling the refinement of extraordinary blending functions

in the context of T-spline local refinement. The outputs of these methods interface

directly with the T-spline local refinement algorithm discussed in Chapter 4.

A.1 Extraordinary Blending Functions

This section reviews the properties of blending functions in a degree-three NURSS

mesh, which are the foundation for the extraordinary blending functions in a T-mesh.

Instead of reiterating subdivision rules and the details of NURSS meshes here, this

section only focuses on the properties of the blending functions of a NURSS mesh as

they are applied in a T-mesh. The remainder of this appendix assumes familiarity

with NURSSs and their meshes, so a review of [12] is recommended before proceeding.

As noted in Section 2.1.3, each edge in a T-mesh has a parameter interval

associated with it—just as in a NURSS mesh. However, a T-mesh imposes an im-

portant restriction on its intervals, which NURSSs do not: the sum of the intervals

assigned to edges on opposite sides of a face must be equal. So, a T-spline without

T-junctions is equivalent to a NURSS, whose intervals on opposite sides of each face

are equal. This restriction prevents the unusual infinite sequences of Bézier patches

observed in sections 5 and 6 of [12].

101

www.manaraa.com

(a) Mesh before a global NURSS refine-
ment.

(b) Mesh after a global refinement. Only
the blending functions for the highlighted
control points are not B-splines.

Figure A.1: Blending functions produced by NURSS subdivision.

The fundamental operation of a NURSS is its subdivision and the NURSS’s

blending functions are also computed via this operation. As with T-splines and

NURBS, we can consider the expression for a NURSS surface as the sum of each

control points times its associated blending function:

P(M) =

∑n

i=0 PiwiBi(M)
∑n

i=0 wiBi(M)
.

Due to the arbitrary topology, each blending function is a function of the entire

NURSS mesh, M . To determine the blending function for a control point Pi, we

associate with each vertex in the mesh a scalar value. We assign one (1) to Pi’s

scalar value and zero (0) to every other vertex in the mesh. Then, we subdivide the

mesh substituting the scalar values for the geometries in the subdivision rules. The

scalar values resulting from the subdivision correspond to the ordinate values for the

blending function.

As observed and illustrated in [38], a single subdivision of a mesh produces

regular bicubic patches of C2 continuity with each refinement. Consequently, a subdi-

vision may produce some combination of tensor product B-splines and extraordinary

blending functions as illustrated in Figure A.1.

102

www.manaraa.com

A.2 Local Extraordinary Point Refinement

Note that scalar values outside of the strict two-neighborhood1 of the blending func-

tion’s central vertex are unaffected by any of the subdivisions. Therefore, as long as

there are no T-junctions within the two-neighborhood of an extraordinary point, the

subdivision operation may be correctly defined in a T-spline.

With our two-neighborhood restriction, we can perform a kind of local refine-

ment of extraordinary blending functions by choosing to subdivide the faces within

that neighborhood and ignore any parts of the T-grid outside of it. One problem with

this, is that the subdivision rules are defined when the whole mesh is subdivided and

not when just a portion of the mesh is refined. This problem stems from the origins

of the subdivision rules, which are derived in general from the full refinement of a

NURBS surface. In order to derive rules for local refinement of extraordinary points,

we must base our derivation on a local subdivision of a T-spline.

Figure A.2 illustrates a local subdivision around a valence four control point

in a T-mesh. We can immediately make certain observations about this operation:

• The face points (labeled Fi), the interior edge points (E0, E1, E2, E3) and the

central vertex point (Vc) are all located in the same geometric positions as they

have in the full refinement. This becomes more evident if we follow up this local

subdivision with a subdivision of the remaining faces—the geometries of these

points do not change in the additional subdivisions.

• The exterior edge and vertex points are computed are functions of the vertices

in the two-neighborhood of the central vertex, but not of the central vertex

itself.

• Thinking ahead to such a subdivision around an extraordinary point, the control

points on the border of Vc’s two-neighborhood (before refinement) are all tensor

product B-splines. So, the contributions of those control points to the positions

of the outer edge and vertex points may be determined using B-spline refinement

rules.

Drawing from the last observation, we can partition the local subdivision op-

eration into two steps:

1We define the one-neighborhood of control point as the set of faces incident to the control point
along with each face’s incident edges and vertices. The two-neighborhood of a control point is then
the union of the one-neighborhoods the vertices in the point’s one-neighborhood.

103

www.manaraa.com

F0

v0 e4 e5

e6

e7

e8e9

e10

e11

v1 v2

v3

v4v5v6

v7

E0 F1

E1Vc

F2E2F3

E3

Figure A.2: Local subdivision around a valence-four control point. Control points
labeled with upper-case letters are in the same positions as in a global NURSS sub-
division of this mesh.

104

www.manaraa.com

Figure A.3: The red control points need to determine their contributions to the
smaller blue ones. Through the NURSS refinement rules, they have already con-
tributed to the small black control points near the extraordinary point.

1. Refine the blending functions associated with the vertices in the one neighbor-

hood of the central vertex (including the central vertex itself).

2. Run the resolution step of the local refinement algorithm on the remaining

vertices of the mesh.

This partitioning allows us to compute the refinement of the blending functions near

the extraordinary point without requiring them to be tensor product B-splines, while

leaving the refinement of the outer blending functions (those associated with points

on border of the two-neighborhood of the central vertex) to be resolved by the local

refinement algorithm.

Gathering these observations together, we determine that the difficult task

of the local subdivision is to determine the contributions of the vertices in the one-

neighborhood of the central vertex (excluding the vertex itself) to the outer edge and

vertex points as illustrated in Figure A.3. All of the other points may be handled

using existing methods: the inner face, edge and central vertex points are computed

using NURSS rules and the blending functions of the outer blending functions are

105

www.manaraa.com

Figure A.4: A cluster of faces near extraordinary points. Any edge or vertex points
surrounded by faces in the cluster may be computed using the NURSS subdivision
rules.

left to local refinement’s resolution step. The rules for computing the refinement of

these “one-neighborhood” blending functions is the final topic of this appendix.

Before writing the refinement rules for the points in question, we should ob-

serve that only the vertices on the border of the refinement pattern need to have

special rules applied to them. So, if multiple extraordinary points lie in close prox-

imity to one another, their incident one-neighborhood faces may be grouped into a

cluster of faces (see Figure A.4. Within this face cluster, all face points, inner edge

and inner vertex points are computed using the NURSS rules. n-sided faces and all of

their incident faces may also be added to such clusters. In some face cluster configu-

rations it is possible to have a faces in the cluster border opposite sides of non-cluster

faces as in Figure A.5. In these cases, the non-cluster faces should be added to the

cluster.

A.2.1 Refinement Rules for Bordering Vertices

After determining the cluster of faces to refine, all of the vertices on the border of

the cluster need to have refinement rules specified for them. The refinement rules for

106

www.manaraa.com

Figure A.5: The faces in yellow belong to the same cluster (they are all incident to
extraordinary points). The light blue faces should be refined as well to avoid invalid
topological configurations.

such a vertex depend on the refinement pattern near it. Since the bordering vertices

are always of valence four, there are four possible refinement patterns that must be

accounted four. These patterns are illustrated in Figure A.6.

In considering each of these cases, the general strategy is to use the known

refinement as a template for each case. This method grows from the observation that

each of the blending functions for the bordering vertices are the union of a portion

of a B-spline basis function and an infinite series of Bézier patches defined by the

subdivision rules. Essentially, our strategy will be to let the subdivision rules take

care of the infinite series and treat the remainder as though the blending function

were actually a B-spline.

Case 1 : The Outside Corner Vertex

In this case, we observe that three of the four blending functions resulting from

subdivision are B-splines. If we consider the refinement of the blending function

in the valence-four case, we can think of this as though all of the “non-B-spline

information” is transferred completely to the face point. So, we treat the vertex as

though it were a B-spline in computing the refined blending functions, throwing away

the portion that goes to the face point (since that portion is already accounted for

107

www.manaraa.com

(a) Case 1 : The Outside Corner
Vertex

(b) Case 2 : The Cluster Side
Vertex

(c) Case 3 : The Shared Outside Cor-
ner Vertex

(d) Case 1 : The Inside Corner
Vertex

Figure A.6: The four possible refinement patterns of vertices on the border of an
extraordinary face cluster. The face clusters are highlighted in yellow.

108

www.manaraa.com

g

f

e

a

b c

d

h

C

T

R

Figure A.7: Case 1 labeled for reference in Table A.1.

in the NURSS rules). This yields three refined B-splines as depicted in Figure A.7.

The intervals and scale values for the blending functions corresponding to this figure

are given in Table A.1.

Vertex Scalar Value Blending Function Intervals

C
(

a+b+ 1

2
c

a+b+c

)

·
(

e+f+ 1

2
g

e+f+g

) s : (a, b, 1
2
c, 1

2
c)

t : (e, f, 1
2
g, 1

2
g)

T
(

a+b+ 1

2
c

a+b+c

)

·
(

1

2
g+h

f+g+h

) s : (a, b, 1
2
c, 1

2
c)

t : (f, 1
2
g, 1

2
g, h)

R
(

1

2
c+d

b+c+d

)

·
(

e+f+ 1

2
g

e+f+g

) s : (b, 1
2
c, 1

2
c, d)

t : (e, f, 1
2
g, 1

2
g)

Table A.1: Outside Corner Vertex Refinement

Case 2 : The Cluster Side Vertex

We look at this case, by examining one possible sequence of refinements of this vertex’s

blending function. Observe that in the valence four case, a single refinement to

the inner edge point is sufficient to account for all of the contributions of the side

vertex to the face points and to the inner vertex point. What remains after this

single refinement is a B-spline associated with the location of the originating vertex.

109

www.manaraa.com

g

f

e

a b

c

h

V

Figure A.8: Case 2 requires only that the blending function’s intervals be altered and
that it be scaled.

Referring to Figure A.8 the blending function at V has knot intervals s = (a, b, 1
2
c, 1

2
c)

and t = (e, f, g, h) and a scalar coefficient of
(

a+b+ 1

2
c

a+b+c

)

.

Case 3 : The Shared Outside Corner Vertex

For this case, we consider that the refinement of this vertex’s blending function takes

two refinements on each side of the blending function. This produces a propagation

pattern as depicted in Figure A.9. Once the face points are accounted for, there are

three remaining B-spline blending functions. Using Figure A.10 as a reference, we

compute blending functions at vertices C,L, and R as listed in Table A.2.

Case 4 : The Inside Corner Vertex

This case is by far the most complicated. The reason for the complication, is that

the inner face and edge points must contribute to position of the inside corner vertex.

So, to handle this case, we partition the work into two parts:

• The refinement of the blending function to itself and the two outside edge points.

• The contributions from the inner edge and face points to the inside corner

vertex’s position.

110

www.manaraa.com

Figure A.9: Case 3 is derived from the series of blending function refinements, that
result in blending functions at the visited locations.

g

f

ea
b

c
d

h

C

R
L

Figure A.10: Case 3 labeled for reference in Table A.2.

111

www.manaraa.com

Vertex Scalar Value Blending Function Intervals

C
(

1

2
b+c+d

b+c+d

)

·
(

1

2
c+b

c+b

)

+
(

1

2
c

b+c

)

·
(

1

2
b+a

a+b+c

) s : (1
2
b, 1

2
b, 1

2
c, 1

2
c)

t : (e, f, g, h)

L
(

a+ 1

2
b

a+b+c

)

·
(

1

2
f+g+h

f+g+h

) s : (a, 1
2
b, 1

2
b, c)

t : (1
2
f, 1

2
f, g, h)

R
(

1

2
c+d

b+c+d

)

·
(

e+f+ 1

2
g

e+f+g

) s : (1
2
b, 1

2
c, 1

2
c, d)

t : (e, f, 1
2
g, 1

2
g)

Table A.2: Outside Corner Vertex Refinement

g

f

e

a

b

c d

h

C
R

B

Figure A.11: Case 4 labeled for reference in Table A.3.

The results of each of these parts are B-spline blending functions, but they are com-

puted in very different ways. For the first part, we treat the blending function of the

inside corner vertex as though its non-B-spline portions have already been refined

away using blending function refinements. This produces blending functions as listed

in Table A.3, which refers to Figure A.11.

The computation of the contributions from the face and inner edge points is a

bit more complicated. The essential idea is to compute the NURSS vertex refinement

around the inside corner vertex, leaving out the portions from the non-cluster face

and the non-inner edges. This produces an expression in terms of the computed face

points and the edge midpoints of the inner edges, which are labeled in Figure A.12.

112

www.manaraa.com

Vertex Scalar Value Blending Function Intervals

C
(

1

2
b+c+d

b+c+d

)

·
(

1

2
c+b

c+b

)

·
(

e+f+ 1

2
g

e+f+g

)

·
(

1

2
f+g

f+g

) s : (1
2
b, 1

2
b, 1

2
c, 1

2
c)

t : (1
2
f, 1

2
f, 1

2
g, 1

2
g)

B
(

1

2
b+c+d

b+c+d

)

·
(

e+ 1

2
f

e+f+g

)

·
(

b+ 1

2
c

b+c

) s : (1
2
b, 1

2
b, 1

2
c, 1

2
c)

t : (e, 1
2
f, 1

2
f, 1

2
g)

R
(

1

2
c+d

b+c+d

)

·
(

e+f+ 1

2
g

e+f+g

) s : (1
2
b, 1

2
c, 1

2
c, d)

t : (e, f, 1
2
g, 1

2
g)

Table A.3: Inside Corner Vertex Refinement

g

f

e

a

b

c d

h

A
MT

ML

C

B

Figure A.12: In case 4, a new blending function at the blue vertex is derived by
combining the face and edge mid-points.

The edge midpoints are computed as specified in [12] (Equation 15 in that work).

The blending function has knot intervals s : (1
2
b, 1

2
b, 1

2
c, 1

2
c) and t : (1

2
f, 1

2
f, 1

2
g, 1

2
g).

Position of the vertex with this blending function is given by

V =

(1
2
c

b + c

)

·

(1
2
f

f + g

)

· A

+

(1
2
b

b + c

)

·

(1
2
f

f + g

)

· B

+

(1
2
c

b + c

)

·

(1
2
g

f + g

)

· C

113

www.manaraa.com

+

(1
2
f

f + g

)

·
1

2
MT

+

(1
2
c

b + c

)

·
1

2
ML.

A.2.2 Final Note

Each of these expressions may be verified by performing additional refinements and

then comparing the result against the full refinement. Note also that many of the B-

spline blending functions produced disagree with the T-mesh as they are given in the

previous section. However, since they are B-splines, they may be injected into the T-

spline local refinement algorithm for further processing. One of the keys to simplifying

local subdivision is to determine B-splines from the extraordinary blending functions

as soon as possible and then leave the resolution of those blending functions to the

T-spline local refinement process. Otherwise, very complex interactions can produce

a large number of difficult to manage cases.

114

	T-Spline Simplification
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	List of Figures
	Introduction
	Overview

	Foundations
	T-Splines
	NURBS Curves
	NURBS Surfaces
	T-Spline Definition

	Blending Function Refinement
	Least-Squares Fitting of Simplified T-Splines
	T-Spline Spaces
	Linear Least-Squares

	Related Work
	Simplification
	NURBS Surface Simplification
	Subdivision Surface Simplification
	NURBS Knot Insertion

	T-Spline Simplification using Iterative Refinement
	T-Spline Local Refinement
	NURBS Knot Insertion Revisited
	The T-Spline Local Refinement Algorithm

	T-Spline Simplification using Iterative Refinement
	Analysis

	T-Spline Simplification using Iterative Simplification
	Control Point Removal
	Reverse Blending Function Transformations
	T-Spline Control Point Removal

	Iterative Simplification
	A Framework for Iterative Simplification
	Applying Algorithm 5.2

	Results
	Iterative Refinement
	Iterative Simplification
	Comparison and Analysis

	Conclusions and Future Work
	Bibliography
	Appendix A
	Extraordinary Blending Functions
	Local Extraordinary Point Refinement
	Refinement Rules for Bordering Vertices
	Final Note

